The correction ΔV showed us the correct volume of respirometer , while also checking out the corrected ΔV we realized that the germinating corn absorbed more oxygen than the peas with beads and beads only, but we also realized that the beads did not really add much change to the volume and really remained stagnant. Discussion
After various experiments it shows that my hypothesis supports my by experiment because it shows that the germinating corn absorbed more oxygen faster than the peas because the peas were already soaked in water. Germinating peas and germination corn needs more energy than non-germinating peas and corn, so that case they require more oxygen for respiration , meanwhile non germinating pea needs to consume way less
Cellular respiration is the process by which energy is harvested involving the oxidation of organic compounds to extract energy from chemical bonds (Raven & Johnson, 2014). There are two types of cellular respiration which include anaerobic respiration, which can be done without oxygen, and aerobic respiration, which requires oxygen. The purpose of this experiment is to determine whether Phaseolus lunatus, also known as dormant seeds or lima beans, respire. You will compare the results of the respiration rate of the dormant seeds, and the Pisum sativum, or garden peas. In this experiment, you will use two constants which will be the temperature of the water and the time each set of peas are soaked and recorded. Using these constants will help
Two members of the group were instructed to visit the laboratory each day of the experiment to water and measure the plants (Handout 1). The measurements that were preformed were to be precise and accurate by the group by organizing a standardized way to measure the plants. The plants were measured from the level of the soil, which was flat throughout all the cups, to the tip of the apical meristems. The leaves were not considered. The watering of the plants took place nearly everyday, except for the times the lab was closed. Respective of cup label, the appropriate drop of solution was added to the plant, at the very tip of the apical meristems.
the replicate shows the same trend as the first experiment. I used a measuring cylinder and a beaker to measure out the amounts of water; however these did not seem to affect the quality of my results. To increase the accuracy of my results I could have perhaps used a burette. Even though I did the best I could to keep the experiment accurate, I did. some places there were mistakes that unintentionally occurred.
The primary nutrients that plants require are carbon, hydrogen, and oxygen from air and water. Sugar has a different effect on animals, humans, and plants. In this experiment, we are testing the effects of sugar on the growth of wheatgrass. For this experiment, we used regular sugar that we put in our food and drinks. To test our hypothesis we are using two groups control and experiment group. The control plant received only water but the experimental plant received sugar but, both plants were placed in the same temperature and same amount of water. Our hypothesis was correct, experiment plant “sugar water” yield more plant growth than control plant “water”. This experiment shows the sugar water plant grow faster than water because of the average of both plants. The sugar water experiment plant had longer in length compared to water control plant.
Conclusion In my conclusion, the potatoes with the lowest concentration gained the most mass, and would become hard relating back to the Turgor theory I stated earlier. In contrast to this, the potatoes in the most concentrated solution lost the most weight thus becoming plasmolysed and limp also relating back to the background I have mentioned earlier. Evaluation In general the experiment was succesful the results were consistent and also were in accordance with the theories made at the start.. The experiment could have been improved by: · More subjects used instead of potatoes · More potatoes · Wider time ranger · Different molarities Using this variety of methods could have improved the experiemnt, however I was generally satisfied with the results of this osmosis experiement.
Osmosis in Potato Tubes Osmosis: Osmosis is the movement of water molecules through a semi-permeable membrane from a high concentration to a low concentration. Diagram: [IMAGE] [IMAGE] Aim: To see the effects of different concentration of sugar solution on Osmosis in potato tubes. Key factor: In the investigation we change the sugar solution from: 0%-10%-20%-30%-40%-50% this is the independent variable; the dependant variable is the change in mass. Prediction: I predict that all the potato tubes in pure water or low concentration sugar solution will swell because water enters their cells by osmosis.
With this information we were able to identify any patterns and similarities. Hypothesis: The higher the temperature of water, potato and H²O², the rate at which the Enzyme will work will be faster therefore producing more oxygen. The reaction will be the same without the catalase (potato). Therefore in both experiments the Enzyme will work more rapidly and produce more oxygen. Aim: To test the hypothesis.
The experiment is aimed at giving a better understatement of osmosis process and the different conditions in which osmosis occurs.
When doing this experiment I was able to see the effect of different concentrations on the rate of osmosis, each was done by measuring the initial mass and length of the potato cylinder and after osmosis, the results were conducted to show that as the sucrose concentration increases the rate of osmosis also increases as I said in my hypothesis thusly making a direct decrease in mass.
At point A the graph shows that no change in mass, of the potato, would have have occurred had we used a 0.2 (m) sucrose solution. This suggests that the concentration of water inside the potato would have been equal to the solution outside the potato. At point B (plain water), there is no indication that the cell is increasing in mass. This is because the cell is fully turgid and no more water can enter.
Comparing the Growth of Pea Plants Grown in the Light and in the Dark Aim: To compare the vertical growth and weight gain of pea plants grown in the light and in the dark. Background Knowledge: Photosynthesis forms the basis for this experiment. This is the process by which a plant makes food for itself from the raw materials around it. The energy needed for photosynthesis comes from sunlight, which is the variable for this experiment.
Investigating the Effect of Sugar Solution on the Weight and Size of Potato Cells Aim: To investigate whether the different concentration of sugar solution will affect the weight and size of the potato cells. General background information: Osmosis is defined as the movement of water or any other solution's molecules from an area in which they are highly concentrated to a region in which they are less concentrated. This movement must take place across a partially permeable membrane such as a cell wall, which lets smaller molecules (E.g. water) through but does not allow larger solute molecules to pass through. The molecules will continue to diffuse until the area in which the molecules are found to reach a state of equilibrium, meaning that the molecules are equally distributed throughout the cell, with no area having a higher or lower concentration than any other hence equal. Hypothesis/prediction: For this particular investigation I believe that the lower the concentration of the sugar solution in the test tube the mass of the potato will be greater and the longer the potato cells will be.
For years, natural selection has decided how each organism would evolve and which ones would prosper. In order to understand it more thoroughly, we placed 50 dried peas and 50 kidney bean seeds into a paper envelop filled with rice. We then proceeded to pull out seeds without looking from the bag. When analyzing the data we noted that over the generation the population of peas had grown while the kidney beans had vastly diminished. By taking in account the frequency of both seeds in the bag, we concluded that due to the small size of the peas, and the large size of the kidney beans, the peas survived to by blending in with the rice while the beans stood out.
... els of sucrose solution to distilled water (see molarity table above) and I placed each of the mixtures into the correct beakers. 5. Then I weighed all the potato chips on an electronic balance (see results) and recorded the results. 6. I placed 5 pieces of potato into each beaker and left them for approx 36 hrs. 7. After this time I drained out the solutions from the beakers and I carefully placed them in order of molarity on a paper towel. 8. I dried the potato chips gently and then weighed each potato piece and recorded the results. 9. As I had extra time I made a second experiment and also recorded those Results: Molarity (M) Starting Weight (g) (Results 1) Final Weight (g) (Results 1) Percentage Change (%) (Results 1) Start Weight (g) (Results 2) Final Weight (g) (Results 2) Percentage Change (%) (Results 2) These values clearly support my prediction, and even though there are some anomalous results, there is an overall negative trend across the whole set of results, proving them accurate. Analysis of Results: The sucrose concentration of the solution into which the potato tissue is placed affects to what degree it grows or shrinks. As you can see from the graph the results show a clear negative correlation, a very obvious inversely proportional trend. From this a conclusion can be drawn. When the water concentration is high, the potato gains water, as seen by the 0.0 molarity solution. When the water concentration is low, the potato loses weight and therefore decreases in mass, as seen in the 1.0 concentration solution. This proves my hypothesis correct. The results were quite widely ranged, as seen on the graph, wit ......
As an extension to this investigation, I would run two experiments in parallel. All cores would be from the same potato, but one would run for an hour, as this one did and for the other the cores would be left in the solutions for longer, perhaps 24 hours, to establish if one hour is the end point of the osmotic diffusion.