ike the other alkali metals, lithium has a single valence electron that is easily given up to form a cation. Because of this, it is a good conductor of heat and electricity as well as a highly reactive element, though the least reactive of the alkali metals. Lithium's low reactivity compared to other alkali metals is due to the proximity of its valence electron to its nucleus (the remaining two electrons are in lithium's 1s orbital and are much lower in energy, and therefore they do not participate in chemical bonds).
Lithium metal is soft enough to be cut with a knife. When cut, it possesses a silvery-white color that quickly changes to gray due to oxidation. While it has one of the lowest melting points among all metals (180 °C), it has the highest melting and boiling points of the alkali metals.
Lithium has a very low density of 0.534 g/cm3, comparable with that of pine wood. It is the least dense of all elements that are solids at room temperature, the next lightest solid element (potassium, at 0.862 g/cm3) being more than 60% denser. Furthermore, apart from helium and hydrogen, it is less dense than any liquid element, being only 2/3 as dense as liquid nitrogen (0.808 g/cm3).[note 1][5] Lithium can float on the lightest hydrocarbon oils and is one of only three metals that can float on water, the other two being sodium and potassium.
Lithium floating in oil
Lithium's coefficient of thermal expansion is twice that of aluminium and almost four times that of iron.[6] It has the highest specific heat capacity of any solid element. Lithium is superconductive below 400 μK at standard pressure[7] and at higher temperatures (more than 9 K) at very high pressures (>20 GPa)[8] At temperatures below 70 K, lithium, like sodium, underg...
... middle of paper ...
...um than they should, and some younger stars have far more. The lack of lithium in older stars is apparently caused by the "mixing" of lithium into the interior of stars, where it is destroyed. Furthermore, lithium is produced in younger stars. Though it transmutes into two atoms of helium due to collision with a proton at temperatures above 2.4 million degrees Celsius (most stars easily attain this temperature in their interiors), lithium is more abundant than predicted in later-generation stars, for causes not yet completely understood.
Though it was one of the three first elements (together with helium and hydrogen) to be synthesized in the Big Bang, lithium, together with beryllium and boron are markedly less abundant than other nearby elements. This is a result of the low temperature necessary to destroy lithium, and a lack of common processes to produce it.[34]
Liopleurodon lived in ocean which covered the Europe at that time. There were two species of Liopleurodon which lived in Jurassic Period.
Lithium has an atomic number of 3, and an atomic weight of 6.94. In general, lithium is more stable than hydrogen, and slightly less stable than nitrogen, carbon, and oxygen. When looking at chemical ion properties, it is useful to consider three main characteristics: the size, or radius, of the ion, the charge, and the ion's electron affinity. Lithium has a similar charge to radius ratio to that of magnesium, which is in group IIA of the periodic table, and so chemists say that the two elements are "chemically similar.
Molybdenum is a transition metal. It is represented by the symbol Mo. It is a pure metal that is is silverish white in color and very hard, and has one of the highest melting points of all pure elements at 4753 °F. Its boiling point is 8382 °F. Its density is 10280 kg/m3 and its hardness is 5.5.
In the year 1775 my life was turned upside down. I was born in Manhattan, New York, in the year 1760. Life was wonderful for my first 15 years. My father owned a print shop and his business thrived. Everything started to change when my brother, Abiel, and father, Jonas, left to join The Continental Army in December of 1775. Britain's power over the Colonies was troubling many people, including my dad. My father had always complained about the how the Stamp Act affected his business negatively and that the British are no good. When he joined the army, he had to sell off the shop to another family and left my mother and me with a dilemma; how would we support ourselves and our family? At the time of his departure I had a sister named Amity who was nine and a baby brother who was almost one. I had always assumed I would live in wealth until I married. However, nothing was guaranteed. I realized I was going to have to put in lots of effort to get my life back to how it was before, if that was even possible.
-------------------------------------------------------------------- The reactivity series is a table to show which metals are most reactive to the least reactive. Potassium is known as the most reactive and platinum the least. --------------------------------------------------------------
The solid having high electric (ionic) conductive are called solid electrolyte. In general the conductivity of the electrolyte lies in between 10-6 to 10-1 s/cm range.
Lewis acidic because it is able to donate a hydrogen ion (Kotz et al., 1996).
Each scientist or team of scientists had so much trouble reducing the Lithium compounds because Lithium does not exist in its elemental form in nature. It combines very easily with other elements. Lithium is a soft silvery-white lustrous metal, which can be easily cut with a knife, and it is the lightest of all known metals. It is highly reactive with water and air, and tarnishes readily when exposed to the latter due to a formation of a layer of Lithium suboxide on its surface. Because of its high rate of reaction to air, it must be stored under liquid paraffin, oil, or kerosene, which contain no air, to prevent oxidation. Lithium is detected in its compounds by the characteristic red coloration that it imparts to flames when burned, as Gmelin detected, and by spectroscopic methods.
Lithium-Ion Batteries are extremely popular in the technology industry for several reasons. First off, they are much lighter then other batteries because they are made with lightweight lithium (a light and reactive metal) and carbon. Second of all, they give the most power per pound. A Lithium-Ion Battery stores 150 watt-hours per kilogram. Compare that with a Nickel-Metal Hydride Battery which only has 100 watt-hours per kilogram or a Lead-Acid Battery which only has 25 watt-hours per kilogram. There is simply no comparison, the Lithium-Ion Battery has the most watt-hours per kilogram (Howstuffworks, 2009).
The Big Bang Theory is one of the most important, and most discussed topics in cosmology today. As such, it encompasses several smaller components that attempt to explain what happened in the moments after creation, and how the universe we know today came from such a fiery, chaotic universe in the wake of the Big Bang. One major component of the Big Bang theory is nucleosynthesis. We know that several stellar phenomena (including stellar fusion and various types of super novae) are responsible for the formation of all heavy elements up through Plutonium, however, after the advent of the Big Bang theory, we needed a way to explain what types of matter were created to form the earliest stars.!
The least reactive materials are placed at the bottom of the reactivity series. From preliminary work that I have already done I know that Potassium and sodium are the most reactive metals, and that gold and platinum are the least reactive metals. To determine the order of how reactive a metal is and where to place it in the reactivity series you have to see how the metal reacts to: Ø Oxygen (air) Ø Water Ø Acid When metals are heated they react with oxygen in the air. As the metal is heated it reacts with the oxygen to form an oxide. The most reactive metals such as potassium and sodium burn brightly when they are heated.
Potassium is a solid silvery white element. It is soft and can be cut with a knife. Potassium is the least dense known metal, besides lithium. It is the seventh most abundant element. It makes up about 1.5% by weight of the earth's crust. It decomposes in water because of the hydrogen. It usually catches fire during reaction with water.
Superconductivity, a similar phenomenon, was discovered in 1911 by Dutch physicist Heike Kamerlingh Onnes. When he cooled some mercury down to liquid helium temperatures, it began to conduct electricity with no resistance at all. People began experimenting with other metals, and found that many tranisition metals exhibit this characteristic of 0 resistance if cooled sufficiently. Superconductors are analagous to superfluids in that the charges within them move somewhat like a superfluid - with no resistance through sections of extremely small cross-sectional area. Physicists soon discovered that oxides of copper and other compounds could reach even higher superconducting temperatures. Currently, the highest temperature at wich a material can be superconductive is 138K, and is held by the compound Hg0.8Tl0.2Ba2Ca2Cu3O8.33.
Aluminum is a lightweight, silvery metal. The atomic weight of aluminum is 26.9815; the element melts at 660° C (1220° F), boils at 2467° C (4473° F), and has a specific gravity of 2.7. Aluminum is a strongly electropositive metal and extremely reactive. In contact with air, aluminum rapidly becomes covered with a tough, transparent layer of aluminum oxide that resists further corrosive action. For this reason, materials made of aluminum do not tarnish or rust. The metal reduces many other metallic compounds to their base metals. For example, when thermite (a mixture of powdered iron oxide and aluminum) is heated, the aluminum rapidly removes the oxygen from the iron; the heat of the reaction is sufficient to melt the iron. This phenomenon is used in the thermite process for welding iron .
The Big Bang, the alpha of existence for the building blocks of stars, happened approximately fourteen billion years ago. The elements produced by the big bang consisted of hydrogen and helium with trace amounts of lithium. Hydrogen and helium are the essential structure which build stars. Within these early stars, heavier elements were slowly formed through a process known as nucleosynthesis. Nucleosythesis is the process of creating new atomic nuclei from pre-existing nucleons. As the stars expel their contents, be it going supernova, solar winds, or solar explosions, these heavier elements along with other “star stuff” are ejected into the interstellar medium where they will later be recycled into another star. This physical process of galactic recycling is how or solar system's mass came to contain 2% of these heavier elements.