Our solar system consists of eight planets, which can be separated into two categories.
Those which reside inside the asteroid belt named the 'Inner Solar System' namely Mercury, Venus, Earth and Mars designated the terrestrial or rocky planets whilst those orbiting beyond the asteroid belt, Jupiter, Saturn, Uranus and Neptune classified as the 'Jovian Planets comprise the 'Outer Solar System'. The term Jovian is derived from Jupiter, which describes the remaining three planets as Jupiter-like.
Unlike the inner terrestrial planets, the Jovian worlds are composed of gas, primarily hydrogen and helium and therefore do not have a solid surface.
They are the four largest planets in our solar system if not by mass, then by diameter with Jupiter having the status of being the giant among the giants by acquiring greater than twice the mass of all the other planets in the solar system combined. Just using Earth as a comparison, Jupiter's mass is more than three hundred times larger.
These planets became so massive because they were able to incorporate huge amounts of volatiles, gases, when they formed; with some hypotheses suggesting they may also have been the first planets in our solar system to evolve.
Therefore, to explore the nature and formation of these categories of planets we have to go back to the primordial solar nebula to ascertain the materials available and environmental conditions needed for their eventual evolution.
From many observations and studies it now appears certain, that stars comparable to our Sun formed in the centres of cold dense molecular clouds. Consisting mainly of hydrogen, helium with smaller amounts of heavier gases and dust; the residue of minerals and elements left by explosions from...
... middle of paper ...
...nary nature of Jupiter's interior and structure.
It will be able to look beneath the observable cloud layers for the first time and gather data relating to composition, temperature and atmospheric movement to unprecedented depths.
Juno will also sample and monitor the planet's huge magnetosphere with particular attention being applied to its relationship with the large metallic hydrogen level below its surface.
More importantly for the theories of how the Jovian planets formed it will attempt to clarify whether or not Jupiter has a solid core and if so its composition.
If not it could profoundly upset the theories regarding the role planetesimals play in planet formation and possibly infer that the Jovian planets evolved instead from a gravitational collapse in unstable regions of the protoplanetary disk or a completely new explanation for their formation..
Have you ever looked up into the night skies and wondered what might be out there? One question I always wonder is where in the universe might there be a livable planet? Well the answer might be closer than you think, well actually 588 million kilometers away from earth. Jupiter of course is what I’m talking about. Fell first let’s ask the why we might move. Let’s face it earth is not going to be able to be habitable forever in fact ate the rate humans are polluting the atmosphere earth won’t be around that much longer. So might need a new place to live. So could the answer be Jupiter? Before that we need to know a little about the new planet and if it’s able to sustain life. Let’s start with the Jupiter’s history. Jupiter is the largest planet in the solar system. Jupiter was named after the king of the gods and Roman mythology. The ancient Greeks named the planet after Zeus, the king of the Greek pantheon. In 1610, a man that goes by the name “Galileo Galilei” was looking through his homemade telescope when he came across Jupiter. He notice four objects circling Jupiter and described them as "four fixed stars, totally invisible by their smallness" it was there were he discovered four large moons Io, Europa, Ganymede and Callisto, which underwent several name change but are now known as the Galilean moons. This was the first time celestial bodies were seen circling an object other then Earth. Jupiter spins faster than any other planet, taking 10 hours to complete a turn on its axis, compared to that of 24 hours for Earth. This rapid spin makes Jupiter bulge at the equator and flatten at the poles, making the planet about 7 percent wider at the equator than at the poles. This is Jupiter and this is Jupiter next to the earth. Jup...
The atmosphere of Uranus is thick with a lot of hydrogen, helium, and methane. It has a very low density, the mean density is 1271 kg/m³. Uranus lacks any really significant internal heat source and it mean surface temperature is 58° K.
Research News Planetary Scientists are Seeing the Unseeable Richard A. Kerr Science, New Series, Vol. 235, No. 2 -. 4784. The. Jan. 2, 1987, pp. 113-117. 29-31. The 'Standard' of the 'Standard'. Stable URL:
The extreme brightness of the O-type and B-type stars, coupled with the Earth’s atmosphere, has always made high-resolution imaging of the star-forming region difficult. But recent advances in adaptive optics and the repair of the Hubble Space Telescope have allowed for incredible detail into the center of the dust cloud. 3 The technological advances have also helped reveal several faint stars within the center of the nebula.
Solar nebula is a rotating flattened disk of gas and dust in which the outer part of the disk became planets while the center bulge part became the sun. Its inner part is hot, which is heated by a young sun and due to the impact of the gas falling on the disk during its collapse. However, the outer part is cold and far below the freezing point of water. In the solar nebula, the process of condensation occurs after enough cooling of solar nebula and results in the formation into a disk. Condensation is a process of cooling the gas and its molecules stick together to form liquid or solid particles. Therefore, condensation is the change from gas to liquid. In this process, the gas must cool below a critical temperature. Accretion is the process in which the tiny condensed particles from the nebula begin to stick together to form bigger pieces. Solar nebular theory explains the formation of the solar system. In the solar nebula, tiny grains stuck together and created bigger grains that grew into clumps, possibly held together by electrical forces similar to those that make lint stick to your clothes. Subsequent collisions, if not too violent, allowed these smaller particles to grow into objects ranging in size from millimeters to kilometers. These larger objects are called planetesimals. As planetesimals moved within the disk and collide with one another, planets formed. Because astronomers have no direct way to observe how the Solar System formed, they rely heavily on computer simulations to study that remote time. Computer simulations try to solve Newton’s laws of motion for the complex mix of dust and gas that we believe made up the solar nebula. Merging of the planetesimals increased their mass and thus their gravitational attraction. That, in turn, helped them grow even more massive by drawing planetesimals into clumps or rings around the sun. The process of planets building undergoes consumption of most of the planetesimals. Some survived planetesimals form small moons, asteroids, and comets. The leftover Rocky planetesimals that remained between Jupiter and Mars were stirred by Jupiter’s gravitational force. Therefore, these Rocky planetesimals are unable to assemble into a planet. These planetesimals are known as asteroids. Formation of solar system is explained by solar nebular theory. A rotating flat disk with center bulge is the solar nebula. The outer part of the disk becomes planets and the center bulge becomes the sun.
2,870,990,000 km (19.218 AU) from the Sun, Uranus hangs on the wall of space as a mysterious blue green planet. With a mass of 8.683e25 kg and a diameter of 51,118 km at the equator, Uranus is the third largest planet in our solar system. It has been described as a planet that was slugged a few billion years ago by a large onrushing object, knocked down (never to get up), and now proceeds to roll around an 84-year orbit on its belly. As the strangest of the Jovian planets, the description is accurate. Uranus has a 17 hour and 14 minute day and takes 84 years to make its way about the sun with an axis tilted at around 90° with retrograde rotation. Stranger still is the fact that Uranus' axis is almost parallel to the ecliptic, hence the expression "on its belly".
In 1609, Galileo Galilei, using “spyglass” which allowed one to see things closer than they appeared, made an early version of the telescope. With it, he observed the skies in a way no one had before. He discovered the moon isn’t perfectly globular, it has craters, the Sun has sunspots, Venus orbits the Sun (contrary to widespread belief in his time), and then he observed four “stars” around Jupiter (“Our Solar System”). Within days, he realized that these objects were not stars, they were moons. Io, Ganymede, Castillo, and Europa are known as the Galilean Moons or Satellites, collectively. During the 19th century, the first measurable physical studies of these moons became achievable when Simon de Laplace derived the satellite masses from their shared gravitational perturbations and afterward, other workers used a new generation of telescopes to measure the mass of these moons. The data collected showed that the density declined from the inner to the outer satellites. According to Adam Showman, “More recent observations of water ice on the surfaces of the outer three moons led to the inference that the satellite compositions range from mostly silicate rock at Io to 60% silicate rock and 40% volatile ices (by mass) at Ganymede and Callisto” ( 77). The Voyager flybys of Jupiter in 1979 exposed indication of extensive geological activity like Europa's fractured terrains, which probably result from tidal heating and bending...
Understanding more about sunspots, their cycle, radiation, and magnetic properties will facilitate scientists to unlock the mysterious workings of the Sun. With today’s technology this understanding will come more quickly. Knowledge of sunspots may lead us to be able to predict when solar activity could affect the Earth like it did during the solar max in 1989. Information like this could eventually allow us to be able to protect ourselves from solar radiation.
A star begins as nothing more than a very light distribution of interstellar gases and dust particles over a distance of a few dozen lightyears. Although there is extremely low pressure existing between stars, this distribution of gas exists instead of a true vacuum. If the density of gas becomes larger than .1 particles per cubic centimeter, the interstellar gas grows unstable. Any small deviation in density, and because it is impossible to have a perfectly even distribution in these clouds this is something that will naturally occur, and the area begins to contract. This happens because between about .1 and 1 particles per cubic centimeter, pressure gains an inverse relationship with density. This causes internal pressure to decrease with increasing density, which because of the higher external pressure, causes the density to continue to increase. This causes the gas in the interstellar medium to spontaneously collect into denser clouds. The denser clouds will contain molecular hydrogen (H2) and interstellar dust particles including carbon compounds, silicates, and small impure ice crystals. Also, within these clouds, there are 2 types of zones. There are H I zones, which contain neutral hydrogen and often have a temperature around 100 Kelvin (K), and there are H II zones, which contain ionized hydrogen and have a temperature around 10,000 K. The ionized hydrogen absorbs ultraviolet light from it’s environment and retransmits it as visible and infrared light. These clouds, visible to the human eye, have been named nebulae. The density in these nebulae is usually about 10 atoms per cubic centimeter. In brighter nebulae, there exists densities of up to several thousand atoms per cubic centimete...
Jupiter, the largest planet in our solar system, has yet to be discovered as in depth as Juno will. NASA New Frontiers recently established the Juno Mission to observe Jupiter (Ionescu 1). The spacecraft is currently on route to Jupiter and it is set to arrive in 2016. Juno will orbit Jupiter thirty-three times total before shutting down (Ionescu 1). Juno will observe Jupiter with deeper observation than can be seen by a telescope. The Juno Spacecraft is a project made to discover Jupiter’s high winds, a possible water source, and the planetary structure.
Our solar system, as we see it today, originally formed from the collapse of a very cold and low-density cloud of gas. The mass of this cloud was composed of 98% hydrogen and helium, 1.4% hydrogen compounds, .4% rock, and .2% metal. The nebula was thought to be a few light years across and was roughly spherical in shape. The cloud was in a state of balance, it was neither contracting or expanding, until a cataclysmic event, most likely a supernova, created a shock wave through the nebula, resulting in an area of higher mass. Once this area became more massive than the rest of the nebula it begin to collapse with the area of hig...
The idea behind the Solar Nebular Hypothesis is that the solar system was condensed from an enormous cloud of hydrogen, helium, and a few other elements and rocks. Around five billion years this cloud of materials began to spin and contract together into a disk shape under their own gravitational forces. The particles started combined together, protoplanets, to eventually form planets. A great mass of the material eventually began to form together, protosun, and make up the sun.
Perhaps one of the most interesting features of our fathomless universe are the planets that are classified as gas giants. Huge, turbulent, and distant, the gas giants are some of the most enigmatic features in our Solar System. I have a personal interest to the gas giants and celestial bodies in general. When I was a child, I was fascinated by our Solar System. I read innumerable books about space, and my interests of outer space had been piqued further by other forms of media. Although I held this interest of space, growing up left me with little time to learn about space, and I lost interest for a while. Taking Earth Science in Milpitas High re-invigorated my interests in the celestial bodies. Using this class, I’m now able to focus on learning more about our colossal universe, in particular, the outer planets.
Investigation of the planets magnetic field and how its extreme axial tilt affects its interaction with the solar winds- This would be useful as it would help us in discovering the unique facets of this planets magnetic field such as why the field is so strong compared to the planets makeup and the large displacement of the center of the magnetic field when compared the center of the plane 4. Examination of the moon Miranda- Miranda is an oddly shaped moon within orbit of Uranus with some of its features thought only possible in a moon much larger than it actually is, by studying this moon we may be able to learn more about how moons form. 5.
Our solar system has eight planets, their moons and satellites, and they are all orbiting the Sun. The eight planets are Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune. Pluto used to be the ninth planet but IAU changed the definition of planet and Pluto did not meet the standards so it is now a Dwarf planet.