Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Science - 3 heat transfer methods
Conduction convection and radiation essay
Science - 3 heat transfer methods
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Recommended: Science - 3 heat transfer methods
I chose the topic of heat transfer because I find it really intriguing to learn about. I wanted to look further into how heat from two substances reacts with one another through another material that was placed between them. I will be looking at how to calculate the rate of heat transfer in a one dimensional space. This means that I will only be focusing on two temperatures, one hot and one cold, and a medium of which the heat will pass through. External factors such as other temperatures and time will not be used as they are for three dimensional spaces.
Heat is a type of energy that transfers between two pieces of matter that have different temperatures. There are three ways heat can be transferred. The first way is through radiation and the second is convection. The third way is through conduction which is when an object or material conducts the heat from one substance through itself and to another. This is the method I will be focusing on.
As stated in the second law of thermodynamics, heat flows from the matter or objects with the higher temperature to the one containing lower temperature and is not possible from cold to hot. This will continue until both objects have reached a thermal equilibrium. At this point, one object does not contain a higher temperature than the other, so the heat transfer ends. The rate at which the heat is transferred depends on the composition of the material that separates the two temperatures. For example, the rate at which heat flows from hot water to cold water through a copper cup will be different than if the cup is porcelain.
The rate that the heat energy is transferred is directly proportionate to the rate at which the temperature changes. Also, since the lower temperature is gaining ...
... middle of paper ...
...make the equations work and come up with an appropriate answer. From these equations, other ones can be created to solve many other problems on heat transfer. Anywhere that temperature exists, there is some sort of heat transfer happening. By predicting, analysing, and testing any equation in thermodynamics, we can learn how to conserve heat and energy for when we actually do need it.
Bibliography
Kreith, Frank, and Mark S. Bohn. Principles of Heat Transfer, 6th ed. New York: Brooks/Cole, 2001
Massachusetts Institute of Technology. “16.4 Thermal Resistance Circuits.”, http://web.mit.edu/16.unified/www/FALL/thermodynamics/notes/node118.html
The Physics Classroom. “Rates of Heat Transfer.”, http://www.physicsclassroom.com/class/thermalP/u18l1f.cfm
Thermodynamics is essentially how heat energy transfers from one substance to another. In “Joe Science vs. the Water Heater,” the temperature of water in a water heater must be found without measuring the water directly from the water heater. This problem was translated to the lab by providing heated water, fish bowl thermometers, styrofoam cups, and all other instruments found in the lab. The thermometer only reaches 45 degrees celsius; therefore, thermodynamic equations need to be applied in order to find the original temperature of the hot water. We also had access to deionized water that was approximately room temperature.
As the temperature increases, the movements of molecules also increase. This is the kinetic theory. When the temperature is increased the particles gain more energy and therefore move around faster. This gives the particles more of a chance with other particles and with more force.
Heat is lost through the atmosphere because of combustion. a process where a substance and oxygen or other elements combine to produce heat and light (fire). Combustion of alcohol produces water. and carbon dioxide. Therefore the amount of heat which is not being used to heat the water lost through the air.
The data which was collected in Procedure A was able to produce a relatively straight line. Even though this did have few straying points, there was a positive correlation. This lab was able to support Newton’s Law of Heating and Cooling.
The first law of thermodynamics simply states that heat is a form of energy and heat energy cannot be created nor destroyed. In this lab we were measuring the change in temperature and how it affected the enthalpy of the reaction.
on how long it takes to heat up. If we heat a large volume of water it
good emitter of heat radiation so a lot of heat will be lost to the
The objective of this experiment was to identify a metal based on its specific heat using calorimetry. The unknown metals specific heat was measured in two different settings, room temperature water and cold water. Using two different temperatures of water would prove that the specific heat remained constant. The heated metal was placed into the two different water temperatures during two separate trials, and then the measurements were recorded. Through the measurements taken and plugged into the equation, two specific heats were found. Taking the two specific heats and averaging them, it was then that
Conduction, convection and radiation are the three methods through which heat can be transferred from one place to another. The (www.hyperphysics.com) first method is the conduction through which heat can be transferred from one object to another object. This process is defined as the heat is transmitted from one to another by the interaction of the atoms and the molecules. The atoms and the molecules of the body are physically attached to each other and one part of the body is at higher temperature to the other part or the body, the heat begins to transfer. A simple experiment through which conduction can be understood easily is as follows. First of all, take a metallic rod of any length. Hold the rod in the hand or at any stand made up of the insulator so that the heat does not transfer to the stand. Heat up the one end of the rod with the help of the spirit lamp. After sometime, touch the other end of the end, the other end of the becomes heated too and the temperature of the other end of the rod has also increased. Although only one end of the rod is heated with the spirit lamp, but the other end of the rod has also been heated. This is represents that the heat has been transferred from one end of the rod to the other end of the rod without heating it from the other end. So, the transformation of the heat is taking place. This process is called the conduction. Conduction is a process which is lead by the free electrons. As the conduction happens occurs only in the metallic materials, the reason for it is that the metals has the free electrons and they can move freely from one part of the body to another part of the body. These electrons are not bounded by the nucleus so, they can move easily. And when the temperature of the ...
The next type of heat transfer is convection. Convection is heat transferred by a gas or liquid. Such as dumping hot water into a cold glass of water, making the water overall warmer. The last type of heat transfer is radiation.
Inside Earth there is heat from pressure (push your hands together very hard). and feel the heat). There is heat from friction (rub your hands). together and feel the heat). There is also heat from radioactive decay.
direct conversion of heat into electric energy, or vice versa. The term is generally restricted to the irreversible conversion of electricity into heat described by the English physicist James P. Joule and to three reversible effects named for Seebeck, Peltier, and Thomson, their respective discoverers. According to Joule’s law, a conductor carrying a current generates heat at a rate proportional to the product of the resistance (R) of the conductor and the square of the current (I). The German physicist Thomas J. Seebeck discovered in the 1820s that if a closed loop is formed by joining the ends of two strips of dissimilar metals and the two junctions of the metals are at different temperatures, an electromotive force, or voltage, arises that is proportional to the temperature difference between the junctions. A circuit of this type is called a thermocouple; a number of thermocouples connected in series is called a thermopile. In 1834 the French physicist Jean C. A. Peltier discovered an effect inverse to the Seebeck effect: If a current passes through a thermocouple, the temperature of one junction increases and the temperature of the other decreases, so that heat is transferred from one junction to the other. The rate of heat transfer is proportional to the current and the direction of transfer is reversed if the current is reversed. The Scottish scientist William Thomson (later Lord Kelvin) discovered in 1854 that if a temperature difference exists between any two points of a current-carrying conductor, heat is either evolved or absorbed depending upon the material. (This heat is not the same as Joule heat, or I2R heat, which is always evolved.) If heat is absorbed by such a circuit, then heat may be evolved if the direction of the current or of the temperature gradient is reversed.
Heat energy is transferred through three ways- conduction, convection and radiation. All three are able to transfer heat from one place to another based off of different principles however, are all three are connected by the physics of heat. Let’s start with heat- what exactly is heat? We can understand heat by knowing that “heat is a thermal energy that flows from the warmer areas to the cooler areas, and the thermal energy is the total of all kinetic energies within a given system.” (Soffar, 2015) Now, we can explore the means to which heat is transferred and how each of them occurs. Heat is transferred through conduction at the molecular level and in simple terms, the transfers occurs through physical contact. In conduction, “the substance
Siegel, RP. "Solar Thermal: Pros and Cons - Part 1: Solar Heating and Cooling." Triple Pundit RSS. N.p., 21 May 2012. Web. 04 Mar. 2014. .
Thermodynamics is the branch of science concerned with the nature of heat and its conversion to any form of energy. In thermodynamics, both the thermodynamic system and its environment are considered. A thermodynamic system, in general, is defined by its volume, pressure, temperature, and chemical make-up. In general, the environment will contain heat sources with unlimited heat capacity allowing it to give and receive heat without changing its temperature. Whenever the conditions change, the thermodynamic system will respond by changing its state; the temperature, volume, pressure, or chemical make-up will adjust accordingly in order to reach its original state of equilibrium. There are three laws of thermodynamics in which the changing system can follow in order to return to equilibrium.