Conduction Convection and Radiation
Conduction, convection and radiation are the three methods through which heat can be transferred from one place to another. The (www.hyperphysics.com) first method is the conduction through which heat can be transferred from one object to another object. This process is defined as the heat is transmitted from one to another by the interaction of the atoms and the molecules. The atoms and the molecules of the body are physically attached to each other and one part of the body is at higher temperature to the other part or the body, the heat begins to transfer. A simple experiment through which conduction can be understood easily is as follows. First of all, take a metallic rod of any length. Hold the rod in the hand or at any stand made up of the insulator so that the heat does not transfer to the stand. Heat up the one end of the rod with the help of the spirit lamp. After sometime, touch the other end of the end, the other end of the becomes heated too and the temperature of the other end of the rod has also increased. Although only one end of the rod is heated with the spirit lamp, but the other end of the rod has also been heated. This is represents that the heat has been transferred from one end of the rod to the other end of the rod without heating it from the other end. So, the transformation of the heat is taking place. This process is called the conduction. Conduction is a process which is lead by the free electrons. As the conduction happens occurs only in the metallic materials, the reason for it is that the metals has the free electrons and they can move freely from one part of the body to another part of the body. These electrons are not bounded by the nucleus so, they can move ea...
... middle of paper ...
...useful in our daily life and has lot of consequences. For example, we know that black surfaces absorb more thermal energy and reflect less thermal energy. Similarly, the shiny surfaces absorb less energy and reflect more energy. This is the main reason that a black car parked in the sun will heat more as compare to the white car. The process of radiation is also used in the field of medicine. Thermography is an interesting use of the radiation in the medicine. Thermograph is a scan of the picture of the body and is a photograph according to the intensity of the radiation at different places. Since diseased parts are usually more hot so thermograph shows prominent white and red spots which helps the doctors to diagnose the disease.
References: http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/heatra.html http://www.britannica.com/EBchecked/topic/135577/convection
Apart of becoming a new patient at a dental office is taking an x-ray and some may have question along with taking an x-ray, like “will I be affected by the x-ray?” or “will I get cancer?”, “how long will it take” “are x-ray’s safe?”, the list goes on and on. So in this paper we will talk about different types of radiation affects such as affects on children and pregnant women as well as some things that may help reduce some of the radiation that may harm the human body.
Nuclear energy is used today for energy supply and about 15% of the world’s energy comes from nuclear power plants some forms of medicine such as nuclear medicine rely solely on nuclear technology. This technology was developed through the process of creating the first atomic bomb and would not exist if not for the advancements made during the Manhattan project.
When there is a heat exchange between two objects, the object’s temperature will change. The rate at which this change will occur happens according to Newton’s Law of heating and cooling. This law states the rate of temperature change is directly proportional between the two objects. The data in this lab will exhibit that an object will stay in a state of temperature equilibrium, unless the object comes in contact with another object of a different temperature. Newton’s Law of Heat and Cooling can be understood by using this formula:
Radiology technology is a science of using radiation to produce images. There are many jobs you can perform in diagnostic imaging usually a radiologic technologist will oft...
As a starting point in CT diagnostic imaging the form of radiation used to provide an image are x-rays photons , this can also be called an external radiation dose which detect a pathological condition of an organ or tissue and therefore it is more organ specific. However the physics process can be described as the radiation passes through the body it is received by a detector and then integrated by a computer to obtain a cross-sectional image (axial). In this case the ability of a CT scanner is to create only axial two dimensional images using a mathematical algorithm for image reconstruction. In contrast in RNI the main property for producing a diagnostic image involves the administration of small amounts of radiotracers or usually called radiopharmaceutical drugs to the patient by injection or oral. Radio meaning the emitted of gamma rays and pharmaceutical represents the compound to which a nuclide is bounded or attached. Unlike CT has the ability to give information about the physiological function of a body system. The radiopharmaceutical often referred to as a nuclide has the ability to emit ga...
... our daily life and has lot of consequences. For example, we know that black surfaces absorb more thermal energy and reflect less thermal energy. Similarly, the shiny surfaces absorb less energy and reflect more energy. This is the main reason that a black car parked in the sun will heat more as compare to the white car. The process of radiation is also used in the field of medicine. Thermography is an interesting use of the radiation in the medicine. Thermograph is a scan of the picture of the body and is a photograph according to the intensity of the radiation at different places. Since diseased parts are usually more hot so thermograph shows prominent white and red spots which helps the doctors to diagnose the disease.
Radiation is when the heat energy travels in actual waves. The suns energy gets to earth because of radiation. These three types of heat transfer can be easily found in the activities we have been doing the past couple of weeks having to do with a universal dwelling. They can mostly be seen when we are trying to test the heating and cooling capabilities of our universal home model.
Radiation has many benefits for humans, but too much of any type of radiation can be harmful. For example, the sun gives off infrared radiation, or heat, as well as visible light, another type of electromagnetic radiation. These ...
Heat is thermal energy being transferred from one place to another, because of temperature changes. This can take place by three processes. These three processes are known as conduction, convection, and radiation.
It involves collisions between the free electrons, the fixed. particles of the metal, other free electrons and impurities. These collisions convert some of the energy that the free electrons are. carrying heat, which means that electrical energy is lost. Apparatus: I will be using an Ammeter.
Heat energy is transferred through three ways- conduction, convection and radiation. All three are able to transfer heat from one place to another based off of different principles however, are all three are connected by the physics of heat. Let’s start with heat- what exactly is heat? We can understand heat by knowing that “heat is a thermal energy that flows from the warmer areas to the cooler areas, and the thermal energy is the total of all kinetic energies within a given system.” (Soffar, 2015) Now, we can explore the means to which heat is transferred and how each of them occurs. Heat is transferred through conduction at the molecular level and in simple terms, the transfers occurs through physical contact. In conduction, “the substance
Have you ever been to the doctor and got an X-Ray? If so, you have just been exposed to radiation. Radiation is the emission of energy from any source. Two examples of radiation are light that comes from the sun and the heat that is constantly coming off the human body. Electromagnetic spectrum is the range of wavelengths or frequencies in which electromagnetic radiation extends. The wavelengths range from low energy (low-frequency) to high energy (high-frequency). Radiofrequency radiation stands at the lower end of the electromagnetic spectrum. It contains non-ionizing radiation. Non-ionizing radiation has enough energy to move atoms around in a molecule or cause vibrations, but it does not have enough energy to ionize (remove charged particles such as electrons). Ionizing radiation has higher energy UV
Radiation is one of the most dangerous and easiest way of having health effects. Radiation was first discovered by Roentgen. Hazards are the first things people need to know in order to understand what it can do to your body. It causes many health effects on everyone out in the world. It harms people in the dentistry and field and even in the medical field. Normal people out the world can also be exposed when coming into one of these offices and getting x-rays of some type.
The electromagnetic spectrum can be determined by three different parts: theory of visible light, the ranges of the electromagnetic spectrum, and how it benefits mankind. There are many benefits to the electromagnetic spectrum such as heating up food or airport security scanners. Scientist and astronomers are now able to detect radio waves in the universe and place satellites in the galaxy. With new inventions using the electromagnetic spectrum, people can learn more about God's universe. People depend on this energy every day, whether it's on the radio or at a doctor's
As discussed in class, submission of your solutions to this exam will indicate that you have not communicated with others concerning this exam. You may use reference texts and other information at your disposal. Do all problems separately on clean white standard 8.5” X 11” photocopier paper (no notebook paper or scratch paper). Write on only one side of the paper (I don’t do double sided). Staple the entire solution set in the upper left hand corner (no binders or clips). Don’t turn in pages where you have scratched out or erased excessively, re-write the pages cleanly and neatly. All problems are equally weighted. Assume we are working with “normal” pressures and temperatures with ideal gases unless noted otherwise. Make sure you list all assumptions that you use (symmetry, isotropy, binomial expansion, etc.).