How did Thales of Miletus Impact Math ? Who knew that a person named Thales of Miletus from the year of 624 B.C. came up with the idea of mathematics? Thales used the scientific method of deduction and reasoning to create theorems which revolutionized mathematics. He is known as the first individual to apply deductive reasoning to geometry. He also influenced later Greek philosophers, astronomers, mathematicians, and thinkers. Thales made a huge contribution to the world of mathematics; he came up with five theorems which are used today in geometry and trigonometry. Thales of Miletus is one of the first known mathematicians in Greek history. He began by using the process of deduction from first principles. Many people question who came up with geometric math? Well, Thales of Miletus did; using his theorems you can figure out how triangles and angles are figured the way they are. You are able to find out the value or how big an angle is by using the theorem; if two triangles are such that two angles and a side of one are equal respectively to two angles and a side of …show more content…
He demonstrates and proves these theorems: the angle in a semicircle equals ninety degrees, a circle is bisected by a diameter, the pairs of vertical angles formed by two intersecting lines are equal, the base angles of isosceles triangles are equal, if two triangles are such that two angles and a side of one are equal respectively to two angles and a side of the other, then the triangles are congruent. According to Livia Russ, “ we explicitly attribute five theorems to Thales, and he successfully applied two of them to the solution of practical problems.” He incorporated these theorems when trying to find the distance from land to the ship. He used sticks creating the figure of a triangle, he then used the shadow of the sticks to find the distance. His technique was set to work, but many mathematicians say that his proofs aren’t
Socrates then managed to verify his theory by demonstrating it on one of Meno’s slaves. He did not directly teach or instruct anything to that boy slave who originally did not know about geometry. Instead, Socrates provided that slave with hints and guided his thoughts step by step. As a result, the boy slave found out a simple geometrical theorem which apparently “emerged” from his mind.
After 3rd century BC, Eratosthenes calculation about Earth's circumference was used correctly in different locations such as Alexandria and syene (Aswan now) by simple geometry and the shadows cast. Eratosthenes's results undertaken in 1ST century by Posidonius, were corroborated in Alexandria and Rhodes by the comparison between remarks is excellent.
Geometry, a cornerstone in modern civilization, also had its beginnings in Ancient Greece. Euclid, a mathematician, formed many geometric proofs and theories [Document 5]. He also came to one of the most significant discoveries of math, Pi. This number showed the ratio between the diameter and circumference of a circle.
The creation of rational thought began in the Greek city of Ionia. The citizens there were open to new ideas and influenced by traders from around the world. Laws were invented by these Ionians and written down to express the will of their society. The greatest and most recognized Ionian thinker was a man named Thales of Miletues. Considered one of the seven ""wises men" of the day, Thales contemplated water and its connection with the universe. Blackburn remarks that Thales ideas: "mark[ed] an important change in western scientific thought" (68). Thales also used I statements when he philosophized marking for the first time in history a human used reason and the rational mind. Other philosophers surfaced in Ionia during this period creating the study of the "cosmos," or universe. They also founded the study of past human affairs or history.
"The Foundations of Geometry: From Thales to Euclid." Science and Its Times. Ed. Neil Schlager and Josh Lauer. Vol. 1. Detroit: Gale, 2001. Gale Power Search. Web. 20 Dec. 2013.
The concept of impossible constructions in mathematics draws in a unique interest by Mathematicians wanting to find answers that none have found before them. For the Greeks, some impossible constructions weren’t actually proven at the time to be impossible, but merely so far unachieved. For them, there was excitement in the idea that they might be the first one to do so, excitement that lay in discovery. There are a few impossible constructions in Greek mathematics that will be examined in this chapter. They all share the same criteria for constructability: that they are to be made using solely a compass and straightedge, and were referred to as the three “classical problems of antiquity”. The requirements of using only a compass and straightedge were believed to have originated from Plato himself. 1
For the Greeks philosophy wasn’t restricted to the abstract it was also their natural science. In this way their philosophers were also their scientist. Questions such as what is the nature of reality and how do we know what is real are two of the fundamental questions they sought to answer. Pythagoras and Plato were two of the natural philosophers who sought to explain these universal principles. Pythagoras felt that all things could be explained and represented by mathematical formulae. Plato, Socrate’s most important disciple, believed that the world was divided into two realms, the visible and the intelligible. Part of the world, the visible, we could grasp with the five senses, but the intelligible we could only grasp with our minds. In their own way they both sought to explain the nature of reality and how we could know what is real.
Euclid, who lived from about 330 B.C.E. to 260 B.C.E., is often referred to as the Father of Geometry. Very little is known about his life or exact place of birth, other than the fact that he taught mathematics at the Alexandria library in Alexandria, Egypt during the reign of Ptolemy I. He also wrote many books based on mathematical knowledge, such as Elements, which is regarded as one of the greatest mathematical/geometrical encyclopedias of all time, only being outsold by the Bible.
Even though Aristotle’s contributions to mathematics are significantly important and lay a strong foundation in the study and view of the science, it is imperative to mention that Aristotle, in actuality, “never devoted a treatise to philosophy of mathematics” [5]. As aforementioned, even his books never truly leaned toward a specific philosophy on mathematics, but rather a form or manner in which to attempt to understand mathematics through certain truths.
yet we know relatively few facts of his life. We are not exactly sure of his birth
Carl Friedrich Gauss is revered as a very important man in the world of mathematicians. The discoveries he completed while he was alive contributed to many areas of mathematics like geometry, statistics, number theory, statistics, and more. Gauss was an extremely brilliant mathematician and that is precisely why he is remembered all through today. Although Gauss left many contributions in each of the aforementioned fields, two of his discoveries in the fields of mathematics and astronomy seem to have had the most tremendous effect on modern day mathematics.
Physics began when man first started to study his surroundings. Early applications of physics include the invention of the wheel and of primitive weapons. The people who built Stone Henge had knowledge of physical mechanics in order to move the rocks and place them on top of each other. It was not until during the period of Greek culture that the first systematic treatment of physics started with the use of mechanics. Thales is often said to have been the first scientist, and the first Greek philosopher. He was an astronomer, merchant and mathematician, and after visiting Egypt he is said to have originated the science of deductive geometry. He also discovered theorems of elementary geometry and is said to have correctly predicted an eclipse of the sun. Many of his studies were in astronomy but he also observed static electricity. Phythogoras was a Greek philosopher. He discovered simple numerical ratios relating the musical tones of major consonances, to the length of the strings used in sounding them. The Pythagorean theorem was named after him, although this fundamental statements of deductive geometry was most likely first an idea from Egyptian methods of measurements. With the help of his followers he discovered that the earth was a sphere, but he did not believe it revolved around the sun.
There are many people that contributed to the discovery of irrational numbers. Some of these people include Hippasus of Metapontum, Leonard Euler, Archimedes, and Phidias. Hippasus found the √2. Leonard Euler found the number e. Archimedes found Π. Phidias found the golden ratio. Hippasus found the first irrational number of √2. In the 5th century, he was trying to find the length of the sides of a pentagon. He successfully found the irrational number when he found the hypotenuse of an isosceles right triangle. He is thought to have found this magnificent finding at sea. However, his work is often discounted or not recognized because he was supposedly thrown overboard by fellow shipmates. His work contradicted the Pythagorean mathematics that was already in place. The fundamentals of the Pythagorean mathematics was that number and geometry were not able to be separated (Irrational Number, 2014).
The 17th Century saw Napier, Briggs and others greatly extend the power of mathematics as a calculator science with his discovery of logarithms. Cavalieri made progress towards the calculus with his infinitesimal methods and Descartes added the power of algebraic methods to geometry. Euclid, who lived around 300 BC in Alexandria, first stated his five postulates in his book The Elements that forms the base for all of his later Abu Abd-Allah ibn Musa al’Khwarizmi, was born abo...
Euclid, also known as Euclid of Alexandria, lived from 323-283 BC. He was a famous Greek mathematician, often referred to as the ‘Father of Geometry”. The dates of his existence were so long ago that the date and place of Euclid’s birth and the date and circumstances of his death are unknown, and only is roughly estimated in proximity to figures mentioned in references around the world. Alexandria was a broad teacher that taught lessons across the world. He taught at Alexandria in Egypt. Euclid’s most well-known work is his treatise on geometry: The Elements. His Elements is one of the most influential works in the history of mathematics, serving as the source textbook for teaching mathematics on different grade levels. His geometry work was used especially from the time of publication until the late 19th and early 20th century Euclid reasoned the principles of what is now called Euclidean geometry, which came from a small set of axioms on the Elements. Euclid was also famous for writing books using the topic on perspective, conic sections, spherical geometry, number theory, and rigor.