Understanding Deformation and Motion in Continuum Mechanics

949 Words2 Pages

Continuum Mechanics is the branch of mechanics which deals with the study of deformation and motion of continuous bodies. Primarily, a continuous solid body can be categorized into two types: (i) Rigid body and (ii) Elastic body. When external forces are applied on the body and the relative positions of its particles do not change at all, the body is said to be perfectly rigid body, otherwise it is said to be elastic body. A body is called strained, if under the influence of some external forces, the relative positions of its particles get altered. The change in the relative position of particles is called deformation. In practice, all solid bodies undergo deformation up to some extent by the application of suitable forces upon them. There are certain bodies which regain their original configuration when the deforming forces are removed. For example, the wire regains its original length after …show more content…

Rigid body motion does not change the length of a vector joining the pair of points inside the body and has no concern with the strain analysis. When external forces are applied on an elastic body, the body undergoes deformation. Due to the elasticity of the body, there comes into play a force which resists the deformation. This force is called stress force. Clearly, the deformation of the body is accompanied by the stress force. In other words, stress and strain occur together in inelastic body. There are two types of elastic deformation: (i) Dilatation and (ii) Shear strain set up in the body in such a way that there is a change only in volume but no change in shape, is called dilatation. In the shear deformation, there is a change in the shape of the body without a change in its volume. Dilatations are further categorized into two kinds: compression, in which volume is reduced; and rarefaction, in which the volume is

More about Understanding Deformation and Motion in Continuum Mechanics

Open Document