Antibiotic resistance occurs in bacteria when the use of antibiotics manages to kill off every bacteria except for a lone few. The lone few then live to pass on their DNA every time they undergo binary fission and the antibiotic resistance bacteria spread. This antibiotic resistance has given rise to numerous problems in the medical world as the bacteria they used to handle with a prescription of antibiotics now thrive without barriers. Currently, the main six bacteria that present problems with antibiotic resistance are Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp., collectively known as the ESKAPE pathogens. Collectively these ESKAPE pathogens claim
In the last decade, the number of prescriptions for antibiotics has increases. Even though, antibiotics are helpful, an excess amount of antibiotics can be dangerous. Quite often antibiotics are wrongly prescribed to cure viruses when they are meant to target bacteria. Antibiotics are a type of medicine that is prone to kill microorganisms, or bacteria. By examining the PBS documentary Hunting the Nightmare Bacteria and the article “U.S. government taps GlaxoSmithKline for New Antibiotics” by Ben Hirschler as well as a few other articles can help depict the problem that is of doctors prescribing antibiotics wrongly or excessively, which can led to becoming harmful to the body.
Escherichia coli is a member of the family Enterobacteriaceae. It is a bacterium with a cell wall that has many components. Escherichia coli can live without oxygen which means that it is a facultative anaerobe. It is also capable of fermenting lactose under anaerobic conditions, and in the absence of alternative electron acceptors. There are effects and various factors that limit its growth rate. Its morphology consists of a rod-shaped gram negative bacteria that is commonly found in soil, water, vegetation, human intestines, as well as the intestines of animals. Its presence can be good or bad.
Bacterial resistance to antibiotics has presented many problems in our society, including an increased chance of fatality due to infections that could have otherwise been treated with success. Antibiotics are used to treat bacterial infections, but overexposure to these drugs give the bacteria more opportunities to mutate, forming resistant strains. Through natural selection, those few mutated bacteria are able to survive treatments of antibiotics and then pass on their genes to other bacterial cells through lateral gene transfer (Zhaxybayeva, 2011). Once resistance builds in one patient, it is possible for the strain to be transmitted to others through improper hygiene and failure to isolate patients in hospitals.
Bloodborne Pathogens are pathogenic microorganisms that can eventually cause disease. They are found in human blood and other bodily fluids such as synovial fluid, semen, vaginal secretions, cerebrospinal fluid and any other fluid that mixes or has contact with blood. The bloodborne pathogens are pathogenic, which means they are disease causing, and they are also microorganisms, which means that they are very small so the human eye cannot see them.
Antibiotic-resistant bacteria are created when mutations in the pathogen's genetic code occurs, changing the protein in the bacteria that the antibiotics normally go after into a shape that the antibiotic can not recognize. The average bacteria divides every twenty minutes, so if a contaminated spot has one single bacteria in the morning, there could be trillions on that same spot at the end of the day. That means that when counting all the possibilities of mutations, the amount of mutated offspring that the bacteria might have formed during those replications could be as high as in the millions. Fortunately though, this does not happen so frequently that it is normally an issue. The amount of non-mutated bacteria vastly outnumbers the mutated ones and many of the mutations occurring in the bacteria usually have either a harmful effect, or not effect at all on its function. That means that the pathogen is still relatively less harmful than it c...
The Centers for Disease Control and Prevention (CDC), describes antibiotic resistance is the ability of bacteria or other microbes to resist the effects of antibiotic treatment. () So instead of being destroyed by the medications, the bacteria survives and continues to reproduce, resultant in new communicable diseases that even more difficult to treat.
Pathogens are a type of microorganism that spreads viral and bacterial diseases. These diseases when present in human blood and body fluids are known as blood borne pathogens, and can spread from one person to another. (Worcester polytechnic institute) The most serious types of blood borne diseases are the hepatitis B virus (HBV) and hepatitis C virus (HCV), which can cause liver damage; and HIV (human immunodeficiency virus), which is responsible for causing AIDS (acquired immune deficiency syndrome). The blood borne pathogens can be spread when the blood or body fluids (semen, vaginal fluid, breast milk, and amniotic fluid) of an infected individual comes into contact with mucous membranes or an open sore or cut on the skin of another person. Mucus membranes are located in the eyes, nose, mouth, and other areas as well. ("Bloodborne pathogens: MedlinePlus Medical Encyclopedia") Two of the most common ways that pathogens are transmitted is through the exchange of fluids during sexual intercourse or by sharing infected IV needles. (Worcester polytechnic institute)
Antibiotic resistance is the ability of bacteria to resist on effects of antibiotic (which is very dangerous). This happens when bacteria eliminates the effectiveness of antibiotics. This gives time for the bacteria to multiply causing more harm. This can easily spread to your family member, co-workers, friends, and any other people you see
Bacteria that is resistant to antibiotics is a major problem not only for the United States, but worldwide. According to the Centers for Disease Control and Prevention (2012) the cause is related to “widespread overuse, as well as inappropriate use, of antibiotics that is fueling antibiotic resistance”. According to World Health Organization (2013) resistance is a global concern for several reasons; it impedes the control of infectious diseases, increases healthcare costs, and the death rate for patients with resistant bacterial infections is twice of those with non-resistant bacterial infections.
This turn of events presents us with an alarming problem. Strains of bacteria that are resistant to all prescribed antibiotics are beginning to appear. As a result, diseases such as tuberculosis and penicillin-resistant gonorrhea are reemerging on a worldwide scale (1). Resistance first appears in a population of bacteria through conditions that favor its selection. When an antibiotic attacks a group of bacteria, cells that are highly susceptible to the medicine will die.
Thesis Statement: The deadly virus Ebola is killing thousands of innocent people world wide, but there are some simple steps that are being taken to prevent this coming tide of death.
The most effective way to combat pathogenic bacteria which invade the body is the use of antibiotics. Overexposure to antibiotics can easily lead to resistant strains of bacteria. Resistance is dangerous because bacteria can easily spread from person to person. Simple methods for preventing excessive bacterial spread are often overlooked. Not all preventative measures are even adequate. Doctors and patients often use antibiotics unnecessarily or incorrectly, leading to greater resistance. Antibiotics are used heavily in livestock and this excessive antibiotic use can create resistant bacteria and transfer them to humans. In order to reduce resistant bacteria,
Bacterial cells, like plant cells, are surrounded by a cell wall. However, bacterial cell walls are made up of polysaccharide chains linked to amino acids, while plant cell walls are made up of cellulose, which contains no amino acids. Many bacteria secrete a slimy capsule around the outside of the cell wall. The capsule provides additional protection for the cell. Many of the bacteria that cause diseases in animals are surrounded by a capsule. The capsule prevents the white blood cells and antibodies from destroying the invading bacterium. Inside the capsule and the cell wall is the cell membrane. In aerobic bacteria, the reactions of cellular respiration take place on fingerlike infoldings of the cell membrane. Ribosomes are scattered throughout the cytoplasm, and the DNA is generally found in the center of the cell. Many bacilli and spirilla have flagella, which are used for locomotion in water. A few types of bacteria that lack flagella move by gliding on a surface. However, the mechanism of this gliding motion is unknown. Most bacteria are aerobic, they require free oxygen to carry on cellular respiration. Some bacteria, called facultatibe anaerobes can live in either the presence or absence of free oxygen. They obtain energy either by aerobic respiration when oxygen is present or by fermentation when oxygen is absent. Still other bacteria cannot live in the presence of oxygen. These are called obligate anaerobes. Such bacteria obtain energy only fermentation. Through fermentation, different groups of bacteria produce a wide variety of organic compounds. Besides ethyl alcohol and lactic acid, bacterial fermentation can produce acetic acid, acetone, butyl alcohol, glycol, butyric acid, propionic acid, and methane, the main component of natural gas. Most bacteria are heterotrophic bacteria are either saprophytes or parasites. Saprophytes feed on the remains of dead plants and animals, and ordinarily do not cause disease. They release digestive enzymes onto the organic matter. The enzymes breakdown the large food molecules into smaller molecules, which are absorbed by the bacterial cells. Parasites live on or in living organisms, and may cause disease. A few types of bacteria are Autotrophic, they can synthesize the organic nutrients they require from inorganic substances. Autotrophic bacteria are either photosynthetic or Chemosynthetic. The photosynthetic bacteria contain chlorophyll that are different from the plant chlorophyll. In bacterial photosynthesis, hydrogen is obtained by the splitting of compounds other than water.
There are 5 main pathways of environmental transmission of pathogens. Those are air-borne, food-borne, water-borne, vector-borne and blood-borne. Air-borne transmission refers to any disease that is caused by a pathogen and transmitted through the air. These pathogens can be spread by coughing, sneezing, stirring dust, liquid spraying, or generally any activity that generate aerosol particles or droplets. These pathogens can include viruses, bacteria, or fungi. Some common examples of pathogens that are spread via air-borne transmission are rhinovirus, hantavirus, adenovirus, and influenza, among many others (cdc.gov).
Currently 700,000 have died from antibiotic resistance, which is a lot higher than the statistics for deaths caused by measles, cholera and tetanus combined. This is showing that already, it has already caused a lot of damage, and it continues to spread.(Walsh, 2014)