DNA Extraction
In extracting chromatin from the cells of wheat germ there are seven steps to
follow. The optimal cell to use would be the polyploidal eukaryotic. Eukaryotes
have nucleus membrane-bound organelles, while prokaryotic does not. The
polyploidal eukaryotic cell has DNA that is held in the nucleus while the
prokaryote has DNA that floats freely around the cell. The DNA of eukaryotes is
more complex and extensive than the other. Prokaryote is a bacterial cell that
usually has DNA in one large strand and only has one chromosome while the
eukaryotic cell has more than one chromosome and is considered to be a higher
organism. Prokaryotes have an outer wall that prevents them from bursting or
collapsing due to osmotic changes. With that said, during the buffering stage the
cell could not be broken and the DNA could not be extracted.
When you add the surfactant it softens the cell and the soap dissolves and
breaks down the lipids and proteins in the phospholipid bilayer. Much like dish
detergent does to greasy dishes. Lipids are insoluble in water, the detergent
reacts with the cell and causes the molecular contents to fall out much like
hydrolysis. Without this you could never complete the extraction.
Then you add the baking soda (buffer) to the test tube. Buffer is defined as a
substance that tends to resist pH changes of a solution, thus stabilizing its
relative acidity and basicity. Th...
5. A second test tube was then filled with water and placed in a test
We used the pipette filler and filled the glucose rinsed pipette to add 10ml of 10% of glucose in test tube 0.
Each subsequent trial will use one gram more. 2.Put baking soda into reaction vessel. 3.Measure 40 mL vinegar. 4.Completely fill 1000 mL graduated cylinder with water.
3.) Divide your 30g of white substance into the 4 test tubes evenly. You should put 7.5g into each test tube along with the water.
The procedure of the lab on day one was to get a ring stand and clamp, then put the substance in the test tube. Then put the test tube in the clamp and then get a Bunsen burner. After that put the Bunsen burner underneath the test tube to heat it. The procedure of the lab for day two was almost exactly the same, except the substances that were used were different. The
For this experiment, you will add the measured amount of the first sample to the measured amount of the second sample into its respectively labeled test tube then observe if a reaction occurs. In your Data Table, record the samples added to each test tube, describe the reaction observed, if any, and whether or not a chemical reaction took place.
. DNA can be left or collected from the hair, saliva, blood, mucus, semen, urine, fecal matter, and even the bones. DNA analysis has been the most recent technique employed by the forensic science community to identify a suspect or victim since the use of fingerprinting. Moreover, since the introduction of this new technique it has been a large number of individuals released or convicted of crimes based on DNA left at the crime sceneDNA is the abbreviation for deoxyribonucleic acid. DNA is the genetic material found in cells of all living organisms. Human beings contain approximately one trillion cells (Aronson 9). DNA is a long strand in the shape of a double helix made up of small building blocks (Riley). There are four types of building
Many things have impacted both the Science and Medical fields of study. Electrophoresis and DNA Sequencing are two of these things. Together they have simultaneously impacted both of these fields. On one hand, there is Electrophoresis. Electrophoresis is a specific method of separating molecules by their size through the application of an electric field. It causes molecules to migrate at a rate and distance dependent on their size. On the other hand, there is DNA Sequencing. DNA Sequencing is a technique used to determine the exact sequence of bases
Base being Baking Soda, or Sodium Bicarbonate, and the acid being Vinegar, or Acetic Acid for a control. I measured 10 ml. of Vinegar, dumped that into a two inch high glass jar, and wrote down the pH level. Then I measured o...
6. Place the test tube in the beaker. Secure the test tube and thermometer to the retort stand using clamps. Begin heating the water bath gently.
This paper explores deoxyribonucleic acid (DNA) collection and its relationship to solving crimes. The collection of DNA is one of the most important steps in identifying a suspect in a crime. DNA evidence can either convict or exonerate an individual of a crime. Furthermore, the accuracy of forensic identification of evidence has the possibility of leaving biased effects on a juror (Carrell, Krauss, Liberman, Miethe, 2008). This paper examines Carrells et al’s research along with three other research articles to review how DNA is collected, the effects that is has on a juror and the pros and cons of DNA collection in the Forensic Science and Criminal Justice community.
Before the 1980s, courts relied on testimony and eyewitness accounts as a main source of evidence. Notoriously unreliable, these techniques have since faded away to the stunning reliability of DNA forensics. In 1984, British geneticist Alec Jeffreys of the University of Leicester discovered an interesting new marker in the human genome. Most DNA information is the same in every human, but the junk code between genes is unique to every person. Junk DNA used for investigative purposes can be found in blood, saliva, perspiration, sexual fluid, skin tissue, bone marrow, dental pulp, and hair follicles (Butler, 2011). By analyzing this junk code, Jeffreys found certain sequences of 10 to 100 base pairs repeated multiple times. These tandem repeats are also the same for all people, but the number of repetitions is highly variable. Before this discovery, a drop of blood at a crime scene could only reveal a person’s blood type, plus a few proteins unique to certain people. Now DNA forensics can expose a person’s gender, race, susceptibility to diseases, and even propensity for high aggression or drug abuse (Butler, 2011). More importantly, the certainty of DNA evidence is extremely powerful in court. Astounded at this technology’s almost perfect accuracy, the FBI changed the name of its Serology Unit to the DNA Analysis Unit in 1988 when they began accepting requests for DNA comparisons (Using DNA to Solve Crimes, 2014).
bottom of the tube. Next a cotton ball is placed in each of the two test tubes
tube. Add 6 mL of 0.1M HCl to the first test tube, then 0.1M KMnO4 and
Firstly, an amount of 40.90 g of NaCl was weighed using electronic balance (Adventurer™, Ohaus) and later was placed in a 500 ml beaker. Then, 6.05 g of Tris base, followed by 10.00 g of CTAB and 3.70 g of EDTA were added into the beaker. After that, 400 ml of sterilized distilled water, sdH2O was poured into the beaker to dissolve the substances. Then, the solution was stirred using the magnetic stirrer until the solution become crystal clear for about 3 hours on a hotplate stirrer (Lab Tech® LMS-1003). After the solution become clear, it was cool down to room temperature. Later, the solution was poured into 500 ml sterilized bottle. The bottle then was fully wrapped with aluminium foil to avoid from light. Next, 1 mL of 2-mercaptoethanol-β-mercapto was added into fully covered bottle. Lastly, the volume of the solution in the bottle was added with sdH2O until it reaches 500 ml. The bottle was labelled accordingly and was stored on chemical working bench.