Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
The significance of the human genome project
The significance of the human genome project
The significance of the human genome project
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Recommended: The significance of the human genome project
DNA is a term that has been used in science as well as in many parts of daily
life. The general public knows that DNA is a part of our bodies but they may
wonder what exactly is DNA? DNA is a term used for deoxyribonucleic acid and it
is the genetic material of all organisms, it is the molecule of life and it
determines all of our physical characteristics. DNA is present in every single
form of life. More than 50 years after the science of genetics was established
and the patterns of inheritance were clarified, the largest questions remained
unanswered: How are the chromosomes and their genes copied exactly from cell to
cell, and how do they direct the structure and behavior of living things?
Two American geneticists, George Wells Beadle and Edward Lawrie Tatum, provided
one of the first important clues in the early 1940s. Working with the fungi
Neurospora and Penicillium, they found that “genes direct the formation of
enzymes through the units of which they are composed.” (Annas) Each unit, a
polypeptide is produced by a specific gene. This establish the field of
molecular genetics.
The fact that chromosomes were almost entirely composed of two kinds of chemical
substances, protein and nucleic acids, had long been known. In 1944, however,
the Canadian bacteriologist Oswald Theodore Avery showed that deoxyribonucleic
acid (DNA) performed this role. He extracted DNA from one strain of bacteria
and introduced it into another strain. The second strain not only acquired
characteristics of the first but passed them on to the next generation. Each
nucleotide consists of a phosphate, a sugar known as deoxyribose, and any one of
four nitrogen-containing bases. The four nitrogen bases are adenine (A),
thymine (T), guanine (G), and cytosine (C).
In 1953 James Dewey Watson of the United States and Francis Harry Crick of
England worked out the structure of DNA. In 1962, both men earned the Nobel
Prize in physiology for their discovery. This knowledge provided understanding
how hereditary information is copied. Watson and Crick found that the DNA
molecule is composed of two long strands in the form of a double helix,
resembling a long, spiral ladder. The strands, or sides of the ladder, are made
up of alternating phosphate and sugar molecules. The nitrogen bases, joining in
pairs, act as the rungs. Each base is attached to a sugar mo...
... middle of paper ...
...ut of the nucleus.
Scientists continue to study the DNA molecule with hopes of find the secrets
that are hidden with in our own bodies. Their findings continue to aid us in
cures and the prevention of many illnesses that years ago we couldn’t solve.
Hopefully the research will soon pay off, with the cure for cancer or
Alzheimer’s Disease. DNA has also been very important in Forensic science where
it is used to identify individuals who have committed a crime. More recently,
DNA has been valuable in identifying those who were lost in the World Trade
Center disaster.
Genetic scientists working on what is known as the Human Genome Project have
been able to map all of the sequences of the three billion nucleotide base pairs
that make up the human genetic material. This will prove to be very important
and will pave the way for many life changing discoveries. This fact has caused
some controversy due to religious and moral matters because it gives man much
power over the developement of future generations. Although this may be a
concern I feel that there are many benefits in the ability we will have to do
amazing things because of these recent discoveries.
Deoxyribonucleic acid (DNA) is an acclaimed extraordinary discovery that has contributed great benefits in several fields throughout the world. DNA evidence is accounted for in the majority of cases presented in the criminal justice system. It is known as our very own unique genetic fingerprint; “a chromosome molecule which carries genetic coding unique to each person with the only exception of identical twins (that is why it is also called 'DNA fingerprinting ')” (Duhaime, n.d.). DNA is found in the nuclei of cells of nearly all living things.
DNA is the genetic material found in cells of all living organisms. Human beings contain approximately one trillion cells (Aronson 9). DNA is a long strand in the shape of a double helix made up of small building blocks (Riley). The repeat segments are cut out of the DNA strand by a restrictive enzyme that acts like scissors and the resulting fragments are sorted out by electrophoresis (Saferstein 391).
DNA (Deoxyribonucleic acid) is a molecule found in in the nucleus of all cells in the body which carries our genetic information. DNA is found in the form of chromosomes, with a total of 23 pairs in the human body1. DNA holds the genetic coding for all our characteristics, i.e. our eye colour, body shape, and how we interact with others on a daily basis.
DNA is the blueprint of life from its creation to its development and until its death. The discovery of the structure of DNA not only revolutionized science and medicine, but it also affected many other facets of existence: evolutionary, industrial, legal, and criminal justice. Its incarnation has benefitted American families and industries and spurred scientific innovation throughout the country. Aptly stated by Francis Crick, “your joys and your sorrows, your memories and your ambitions, your sense of identity and freewill, are in fact no more than the behavior of a vast assembly of nerve cells and their associated molecules. As Lewis Carroll’s Alice might have phrased it: ‘you’re nothing but a pack of neurons.’ [Watson and my] discovery illustrates how that is possible.”
In April of 1953, James Watson and Francis Crick published a game changing paper. It would blow the mind of the scientific community and reshape the entire landscape of science. DNA, fully knows as Deoxyribonucleic Acid is the molecule that all genes are made of. Though it is a relatively new term with regard to the age of science, the story of DNA and the path to its discovery covers a much broader timeframe and had many more contributors than James Watson and Francis Crick. After reading the paper the audience should have a better understanding of what DNA is, the most important experiments that contributed to its ultimate discovery and the names and contributions of the lesser-known scientists that helped Watson and Crick turn their idea
Deoxyribo Nucleic Acid (DNA) is a chromosome found in the nucleus of a cell, which is a double-stranded helix (similar to a twisted ladder). DNA is made up of four bases called adenine (A), thymine (T), guanine (G), and cytosine (C), that is always based in pairs of A with T and G with C. The four bases of A, C, G, and T were discovered by Phoebus Levene in 1929, which linked it to the string of nucleotide units through phosphate-sugar-base (groups). As mention in Ananya Mandal research paper, Levene thought the chain connection with the bases is repeated in a fix order that make up the DNA molecu...
All living things contain DNA. The molecule deoxyribonucleic acid or DNA is what contains an organism’s genetic information. The genetic information contained in DNA is what an organism requires to not only develop and reproduce but also survive. A DNA molecule is built up of nucleotides. Nucleotides are composed of several different things and what the nucleotides are composed of determines the name of it. Another job of DNA is to pass the genetic information through the process of protein synthesis. The DNA can show birth defects in the fetus using different testing. The knowledge of the birth defects of the fetus can be both positive and negative. DNA is a simple yet complex molecule that is used by all living things and makes us the way
This paper explores deoxyribonucleic acid (DNA) collection and its relationship to solving crimes. The collection of DNA is one of the most important steps in identifying a suspect in a crime. DNA evidence can either convict or exonerate an individual of a crime. Furthermore, the accuracy of forensic identification of evidence has the possibility of leaving biased effects on a juror (Carrell, Krauss, Liberman, Miethe, 2008). This paper examines Carrells et al’s research along with three other research articles to review how DNA is collected, the effects that is has on a juror and the pros and cons of DNA collection in the Forensic Science and Criminal Justice community.
Before the 1980s, courts relied on testimony and eyewitness accounts as a main source of evidence. Notoriously unreliable, these techniques have since faded away to the stunning reliability of DNA forensics. In 1984, British geneticist Alec Jeffreys of the University of Leicester discovered an interesting new marker in the human genome. Most DNA information is the same in every human, but the junk code between genes is unique to every person. Junk DNA used for investigative purposes can be found in blood, saliva, perspiration, sexual fluid, skin tissue, bone marrow, dental pulp, and hair follicles (Butler, 2011). By analyzing this junk code, Jeffreys found certain sequences of 10 to 100 base pairs repeated multiple times. These tandem repeats are also the same for all people, but the number of repetitions is highly variable. Before this discovery, a drop of blood at a crime scene could only reveal a person’s blood type, plus a few proteins unique to certain people. Now DNA forensics can expose a person’s gender, race, susceptibility to diseases, and even propensity for high aggression or drug abuse (Butler, 2011). More importantly, the certainty of DNA evidence is extremely powerful in court. Astounded at this technology’s almost perfect accuracy, the FBI changed the name of its Serology Unit to the DNA Analysis Unit in 1988 when they began accepting requests for DNA comparisons (Using DNA to Solve Crimes, 2014).
Mitochondrial DNA is relatively short, only 16 569 bp long, and codes for just 37 genes. It has been completely sequenced (the order of the bases has been worked out) and is very well studied and understood by molecular biologists. There are about 800 m...
The one instant I can pinpoint as the genesis of my interest in biomedical science was the winter of sixth grade, when I picked up a book on creativity and the brain. I found it fascinating, but what really struck me was that here was a several hundred page book that mostly talked about how little we knew about its topic. It made me think. This was supposed to be a book about how much we’ve learned, and what it’s saying is that the progress we’ve made is only in finding out how little we know. This didn’t upset me; it made me curious. Because, of all the things that we should know about, surely our own minds and our own bodies are paramount among them, and yet we still have so much to learn. I’ve since learned that this phenomenon is not restricted to the biological – gravity is one of the most important things in our lives, yet we do not know its cause. But the biomedical questions continue to fascinate me, perhaps because the answers are so vital. Sure, cosmology is intriguing, but what about a cure for cancer, or even the common cold? What about a way of repairing or bypass...
DNA (deoxyribonucleic acid) is a self-replicating molecule or material present in nearly all living organisms as the main constituent in chromosomes. It encodes the genetic instructions used in the development and functioning of all known living organisms and many viruses. Simply put, DNA contains the instructions needed for an organism to develop, survive and reproduce. The discovery and use of DNA has seen many changes and made great progress over many years. James Watson was a pioneer molecular biologist who is credited, along with Francis Crick and Maurice Wilkins, with discovering the double helix structure of the DNA molecule. The three won the Nobel Prize in Medicine in 1962 for their work (Bagley, 2013). Scientist use the term “double helix” to describe DNA’s winding, two-stranded chemical structure. This shape looks much like a twisted ladder and gives the DNA the power to pass along biological instructions with great precision.
Then you add the baking soda (buffer) to the test tube. Buffer is defined as a
part of life because it not only sustains life but it harbors many forms of it as well.
(i) This law establishes the principles of creation and maintaining a database of DNA profiles, for identification purposes, and regulates the collection, treatment and samples of preserved human cells, their analysis and obtaining DNA profiles, the comparing profiles method of DNA extracted from samples and the processing and storage of the respective information in computer. (ii) A database of DNA profiles also serves purposes of criminal investigation. (iii) It is forbidden to use the analysis and treatment of any type of information obtained from analysing samples for different purposes of under section 4. The reason and purpose of this law include the Civil and Criminal identification case together because this law wants to reduce pressure