The purpose of this experiment is to conduct an elimination reaction by dehydrating cyclohexanol to cyclohexane. The elimination reaction that is occurring in this experiment is an E1 reaction. An acid catalyst is used in the experiment because the alcohol functional group is a poor leaving group. The method used to achieve this reaction is to boil the azeotrope until it begins to distill into cyclohexene. Cyclohexene is removed from the mixture by keeping the distillation head below 90°C. After the purification of the product, the product will go under two addition reactions (bromine test and a permanganate test) and a IR spectrum. This will determine the identity and the characteristics of the product. The results of the bromine and permanganate
The competing enantioselective conversion method uses each enantiomer of a kinetic resolution reagent, in this case R-HBTM and S-HBTM, in separate and parallel reactions, where the stereochemistry of the secondary alcohol is determined by the rate of the reactions. When using the CEC method, the enantiomer of the secondary alcohol will react with one enantiomer of the HBTM acyl-transfer catalyst faster than with the other HBTM enantiomer. The mnemonic that identifies the absolute configuration of the secondary alcohol is as follows: if the reaction is faster with the S-HBTM, then the secondary alcohol has the R-configuration. In contrast, if the reaction is faster with the R-HBTM, then the secondary alcohol has the S-configuration. Thin layer chromatography will be used to discover which enantiomer of HBTM reacts faster with the unknown secondary alcohol. The fast reaction corresponds to a higher Rf spot (the ester) with a greater density and a slower reaction corresponds to a lower Rf spot with high de...
In a small reaction tube, the tetraphenylcyclopentadienone (0.110 g, 0.28 mmol) was added into the dimethyl acetylene dicarboxylate (0.1 mL) and nitrobenzene (1 mL) along with a boiling stick. The color of the mixed solution was purple. The solution was then heated to reflux until it turned into a tan color. After the color change has occurred, ethanol (3 mL) was stirred into the small reaction tube. After that, the small reaction tube was placed in an ice bath until the solid was formed at the bottom of the tube. Then, the solution with the precipitate was filtered through vacuum filtration and washed with ethanol. The precipitate then was dried and weighed. The final product was dimethyl tertraphenylpthalate (0.086 g, 0.172mmol, 61.42%).
The unknown bacterium that was handed out by the professor labeled “E19” was an irregular and raised shaped bacteria with a smooth texture and it had a white creamy color. The slant growth pattern was filiform and there was a turbid growth in the broth. After all the tests were complete and the results were compared the unknown bacterium was defined as Shigella sonnei. The results that narrowed it down the most were the gram stain, the lactose fermentation test, the citrate utilization test and the indole test. The results for each of the tests performed are listed in Table 1.1 below.
The spots moved 3.8cm, 2.3cm, 2.1cm, 1.8cm, and 2.5 cm, for the methyl benzoate, crude product, mother liquor, recrystallized product, and isomeric mixture, respectively. The Rf values were determined to be.475,.2875,.2625,.225, and.3125, for the methyl benzoate, crude product, mother liquor, recrystallized product, and isomeric mixture, respectively. Electron releasing groups (ERG) activate electrophilic substitution, and make the ortho and para positions negative, and are called ortho para directors. In these reactions, the ortho and para products will be created in a much greater abundance. Electron Withdrawing groups (EWG) make the ortho and para positions positive.
The goal of this two week lab was to examine the stereochemistry of the oxidation-reduction interconversion of 4-tert-butylcyclohexanol and 4-tert-butylcyclohexanone. The purpose of first week was to explore the oxidation of an alcohol to a ketone and see how the reduction of the ketone will affect the stereoselectivity. The purpose of first week is to oxidize the alcohol, 4-tert-butylcyclohexanol, to ketone just so that it can be reduced back into the alcohol to see how OH will react. The purpose of second week was to reduce 4-tert-butylcyclohexanol from first week and determine the effect of the product's diastereoselectivity by performing reduction procedures using sodium borohydride The chemicals for this lab are sodium hypochlorite, 4-tert-butylcyclohexanone
Saturated sodium chloride solution, also known as brine solution, is used to wash the distillate mixture. The distillate mixture is the phosphoric acid the co-distilled with the product. The brine solution also removes most of the water from the 4-methylcyclohexane layer. When six drops of 4-methylcyclohexene were added with two
This week’s lab was the third and final step in a multi-step synthesis reaction. The starting material of this week was benzil and 1,3- diphenylacetone was added along with a strong base, KOH, to form the product tetraphenylcyclopentadienone. The product was confirmed to be tetraphenylcyclopentadienone based of the color of the product, the IR spectrum, and the mechanism of the reaction. The product of the reaction was a dark purple/black color, which corresponds to literature colors of tetraphenylcyclopentadienone. The tetraphenylcyclopentadienone product was a deep purple/black because of its absorption of all light wavelengths. The conjugated aromatic rings in the product create a delocalized pi electron system and the electrons are excited
Every 5 minutes, a small amount of mixture was dissolved in acetone (0.5 mL) and was spotted onto a thin layer chromatography (TLC) plate, which contained an eluent mixture of ethyl acetate (2 mL) and hexanes (8 mL). The bezaldehyde disappearance was monitored under an ultraviolet (UV) light. Water (10 mL) was added after the reaction was complete, and vacuum filtrated with a Buchner funnel. Cold ethanol (5 mL) was added drop-by-drop to the dried solid and stirred at room temperature for about 10 minutes. Then, the solution was removed from the stirrer and place in an ice bath until recrystallization. The recrystallized product was dried under vacuum filtration and the 0.057 g (0.22 mmol, 43%) product was analyzed via FTIR and 1H NMR
Hydration of alkenes is characterized by the addition of water and an acid-catalyst to a carbon-carbon bond leading to an alcohol. Dehydration is exactly the opposite in which dehydration of an alcohol requires water to be removed from the reactant. Equilibrium is established between the two processes when the rate of the forward reaction equals the rate of the reverse reaction. The alkene that is used in this experiment is norbornene. Through hydration of norbornene, an alcohol group should be present on the final product yielded what is known as exo-norborneol. Percent yield is a numerical indication of how much of the reactant was actually reacted to yield product. The equation for percent yield is shown below:
The solvent should be easily removed from the purified product, not react with the target substances, and should only dissolve the target substance near it’s boiling point, but none at freezing. A successful recrystallization uses minimum amount of solvent, and cools the solution slowly, if done to fast, many impurities will be left in the crystals. Using the correct solvent, in this case ice water and ethyl acetate, the impurities in the compound can be dissolved to obtain just the pure compound. A mixed solvent was used to control the solubility of the product. The product is soluble in ethanol an insoluble in water. Adding water reduced solubility and saturates the solution and then the crystals
Luminol is a white, sometimes pale yellow, crystalline solid that can create a chemiluminescence when mixed with certain oxidizing agents. In order to create luminol, there needs to be a diamindation of 3-Nitrophthalic Acid by Hydrazine, which produces 3-Nitrophthalihydrazine and is then reduced with Sodium Dithionite. The product on its own is not soluble in water but is soluble in most organic solvents. Other than emitting a blue light, luminol is also used in forensic studies. A forensic investigator can use luminol to detect traces of blood by spraying it on an area since it traces an activation oxidant in order to make it emit light. In order to create effective results, investigators must spray even amounts of the solution. The intensity
Purpose/Introduction: In this experiment, four elimination reactions were compared and contrasted under acidic (H2SO4) and basic (KOC(CO3)3) conditions. Acid-catalyzed dehydration was done on 2-butanol and 1-butanol; a 2o and 1o alcohol, respectively. The base-induced dehydrobromination was performed on 2-bromobutane and 1-bromobutane isomeric halides. The stereochemistry and regiochemistry of the four reactions were analyzed by gas chromatography (GC) to determine product distribution (assuming that the amount of each product in the gas mixture is proportional to the area under its complementary GC peak).
Biphenyl was fully soluble in dichloromethane at room temperature and partially soluble in hexanes. Biphenyl was insoluble in methanol, acetone, toluene, and hexanes at room temperature but soluble near their respective boiling points. At room temperature and at 100°C, biphenyl was insoluble in water. Biphenyl recrystallized out from hexanes and methanol at room temperature but remained dissolved in acetone and toluene.
The purpose of this experiment was to make a conclusion on why Mr. R’s lawn was turning yellow, and dieing around his drainage pipe. In this experiment there were different lab groups that tested out different chemical products, that would be washed down a drain. There was a wide assortment of products that were tested in this experiment, for example, windex was one of the products being tested. On our experimental days, we would take our product, and add it to the water supply of our grass. My lab group experimented with windex. Our hypothesis was, if windex was added to the daily water supply of grass, then the grass will turn yellow and die because of the chemicals in the windex.
The effects of temperature on the distribution of organic contaminants between different phases in the subsurface soil was demonstrated by Davis 1997. Calculations were carried out using the data of Heron et al. (1996) for tri-chloro ethane (TCE) at 90°C. The results indicated that raising the temperature to 90°C caused significant increase in the concentration of contaminant in the air phase under both high and low soil organic matter conditions and significantly decreased the amount that is associated with the solids. Only small amounts remain in the liquid phase. The researchers concluded that if the high organic matter content soil is under water saturated conditions, the amount of TCE in the water would approximately double as the temperature increased from 20°C to 90°C, but 82 percent of the TCE would remain adsorbed to the solids. Under low organic matter and water saturated conditions, there would be approximately a 30 percent increase in the amount of TCE in the water phase with an increase in temperature from 20°C to 90°C, leaving approximately 25 percent