barbier reaction: In a 50 mL round bottom flask that had a reflux condenser attachment, saturated ammonium chloride (5 mL), THF (1 mL), zinc powder (0.4 g), benzaldehyde (0.500 mL, 0.5225 g, 4.92 mmol), and allyl bromide (0.470 mL, 0.6533 g, 5.40 mmol) were charged with stir bar and stirred at room temperature for 45 minutes. Diethyl ether (10 mL) was added to the reaction mixture and stirred. The mixture was gravity filtered into a beaker that was topped with a watchglass. The filtrate was transferred to a separatory funnel and the organic layer was extracted with deionized water (10 mL) and diethyl ether (15 mL). The organic layer was placed into an Erlenmeyer flask and the aqueous layer was placed into a beaker, which was extracted with …show more content…
Every 5 minutes, a small amount of mixture was dissolved in acetone (0.5 mL) and was spotted onto a thin layer chromatography (TLC) plate, which contained an eluent mixture of ethyl acetate (2 mL) and hexanes (8 mL). The bezaldehyde disappearance was monitored under an ultraviolet (UV) light. Water (10 mL) was added after the reaction was complete, and vacuum filtrated with a Buchner funnel. Cold ethanol (5 mL) was added drop-by-drop to the dried solid and stirred at room temperature for about 10 minutes. Then, the solution was removed from the stirrer and place in an ice bath until recrystallization. The recrystallized product was dried under vacuum filtration and the 0.057 g (0.22 mmol, 43%) product was analyzed via FTIR and 1H NMR …show more content…
In a separate beaker, acetone (0.587 mL, 8 mmol) and benzaldehyde (1.63 mL, 16 mmol) were charged with a stir bar and stirred on a magnetic stirrer. The beaker mixture was slowly added to the Erlenmeyer flask and stirred at room temperature for 30 minutes. Every 10 minutes, a small amount of the reaction mixture was spotted on a TLC plate, with an eluent mixture of ethyl acetate (2 mL) and hexanes (8 mL), to monitor the decrease in benzaldehyde via a UV light. When the reaction was complete, it was chilled in an ice bath until the product precipitated, which was then vacuum filtrated. The filter cake was washed with ice-cold 95% ethanol (2 x 10 mL) and 4% acetic acid in 95% ethanol (10 mL). The solid was fluffed and vacuum filtrated for about 15 minutes. The 0.688 g (2.9 mmol, 36.8%, 111.3-112.8 °C) product was analyzed via FTIR and 1H NMR spectroscopies, and the melting point was obtained via
As a final point, the unknown secondary alcohol α-methyl-2-naphthalenemethanol had the R-configuration since it reacted the fastest with S-HBTM and much slower with R-HBTM. TLC was a qualitative method and ImageJ served as a quantitative method for determining which reaction was the faster esterification. Finally, 1H NMR assisted in identifying the unknown from a finite list of possible alcohols by labeling the hydrogens to the corresponding peaks.
Then the reaction tube was capped but not tightly. The tube then was placed in a sand bath reflux to heat it until a brown color was formed. Then the tube was taken out of the sand bath and allowed to cool to room temperature. Then the tube was shaken until a formation of a white solid at the bottom of the tube. After formation of the white solid, diphenyl ether (2 mL) was added to the solution and heated until the white solid was completely dissolved in the solution. After heating, the tube was cooled to room temperature. Then toluene (2 mL) was added to the solution. The tube was then placed in an ice bath. Then the solution was filtered via vacuum filtration, and there was a formation of a white solid. Then the product was dried and weighed. The Final product was hexaphenylbenzene (0.094 g, 0.176 mmol,
The goal of this lab is to exemplify a standard method for making alkyne groups in two main steps: adding bromine to alkene groups, and followed by heating the product with a strong base to eliminate H and Br from C. Then, in order to purify the product obtained, recrystallization method is used with ethanol and water. Lastly, the melting point and IR spectrum are used to determine the purity of diphenylacetylene.
The alcohol starting material, 2-methylcyclohexanol, was dehydrated through an E1 elimination by using of phosphoric acid as a catalyst. After a purification by simple distillation, which removed the alkene product and the by-product water from the reaction mixture, the methylcyclohexene products were analyzed by percent yield, boiling point, IR spectroscopy, and two chemical tests, Br2 in CCl4 and Jones test. By performing the simple distillation using pyrolysis, 85% of phosphoric acid and 2-methylcyclohexanol were added into the boiling flask, where the product from the collecting flask was condensed by the ice, and washed with the saturated sodium chloride. The weight of the product was determined and the percent yield of the product was
Benzyl bromide, an unknown nucleophile and sodium hydroxide was synthesized to form a benzyl ether product. This product was purified and analyzed to find the unknown in the compound. A condenser and heat reflux was used to prevent reagents from escaping. Then the solid product was vacuum filtered.
The experimental Fischer esterification of 8.92g of acetic acid with 5.0g of isopentyl alcohol using concentrated sulfuric acid as a catalyst yielded 4.83g (65.3% yield) of isopentyl acetate. The product being isopentyl acetate was confirmed when the boiling point during distillation had similar characteristics to that of the literature boiling points2. Physical characteristics like color and smell also concluded a match of our product with what was intended. 1H-NMR spectroscopy analysis supported this claim due to the fact that the integration values and chemical shifts were comparable to isopentyl acetate. Lastly, infrared spectroscopy (IR) showed similar key characteristics of our product’s wavelengths to that of pure isopentyl acetate5.
Once reaching a constant mass after driving of the excess diethyl ether, the crude product had a mass of 0.327grams and a high percent yield of 97.8%. During the first TLC examination of the crude product it was found to have 3 spots on the plate, biphenyl, benzaldehyde, and benzhydrol with Rf values of 0.68, 0.36, and 0.10 respectively. It was expected to see benzhydrol, the product, and biphenyl, the impurity, on the plate, but the presence of benzaldehyde was telling that not all of the starting material had been consumed during
In this experiment, a mixture of three substances (benzoic acid, 2-naphthol, and 1-4 dimethoxybenzene) will be separated based off acidity strength using the liquid-liquid extraction technique through a separatory funnel. Benzoic acid and 2-napthol will be converted into ionic salts when reacting with their appropriate bases (sodium bicarbonate and sodium hydroxide). Both ionic salts will then form solids through the addition of acidic HCl. Neutral 1,4 – dimethoxybenzene forms a solid through the evaporation of ether. Each compound will then be purified through recrystallization, using the processes of dissolving the solid in either water or methanol, and isolating the solid through vacuum filtration. After a week of evaporation, the compounds will then be examined for both
The most classic and standard procedure for producing esters is the Fisher-esterification reaction. Discovered in 1895 by German chemists Emil Fischer and Arthur Speier 4, this reaction involves refluxing a carboxylic acid and an alcohol in the presence of an acid catalyst. In order to drive the equilibrium towards the products, the water from the dehydration process must be removed and there must be an excess amount of alcohol. A vast range of carboxylic acids may be used for this reaction however the type of alcohols are limited. Primary and secondary alcohols are most frequently used in esterification reactions, tertiary alcohols are steric ally hindered usually resulting in poor yields5 and tend to undergo elimination reactions instead. In this rea...
Data Table 3 indicates the observations from these tests. Though a control test for each test wasn’t prepared, due to the starting reagents being unattainable, the results clearly show that the product is unsaturated. An unsaturated compound means that there is/are bonds in its structure. The product was also analyzed by infrared spectroscopy and gas chromatography. The spectrums obtained allowed one to determine the composition of 1-methylcyclohexene; any impurities and excess products were observed as well. From the infrared spectrum, there is a little peak around 3300-3500 cm-1; this indicated a very little presence of alcohol in the product and thus, most of the alcohol has been successfully removed. If one compared the IR spectrum of the product to the starting material, 2-methylcyclohexanol, one could clearly see the change in peak size of the O-H stretch. The infrared spectrum of 1-methylcyclohexene also depicted a C-H stretch and an alkene functional group at 500-1500 cm-1 and 2932.54cm-1, respectively. From the gas chromatography spectrum (Data Table 4), the area percentages show that there were three products - peaks 22 through 24 - that were formed from the dehydration experiment. Nevertheless, there are two predominant products, as shown from their high percentages, 3-methylcyclohexene (~24%) and 1-methylcyclohexene
This experiment involves performing various techniques, including heating under reflux, separation, drying, distillation, gas chromatography (GC), infrared spectroscopy (IR spectroscopy), and nuclear magnetic resonance (1H NMR). Heating under reflux is important to overcome any activation barrier of energy that may be present in order to complete the reaction.
The percent yield was 26%, and the melting point of the product was 170c-172c. According to these results, it can be considered that there are a high range of reactant in the product because the melting point for Ferrocene is 172 and for Acetylferrocene is about 81-83. It is also showed that the product is not pure, and also the TLC was run.
Ensure gloves are worn at all times when handling strong acids and bases within the experiment of the preparation of benzocaine. 4-aminobenzoic acid (3.0g, 0.022 moles) was suspended into a dry round-bottomed flask (100cm3) followed by methylated sprits (20 cm3). Taking extra care the concentrated sulphuric acid of (3.0 cm3, 0.031 moles) was added. Immediately after the condenser was fitted on, and the components in the flask were swirled gently to mix components. It should be ensured that the reactants of the concentrated sulphuric acid and the 4-aminobenzoic acid were not clustered in the ground glass joint between the condenser itself and the flask. In order to heat the mixture to a boiling point, a heating mantle was used and then further left for gently refluxing for a constituent time of forty minutes. After the duration of the consistent forty minutes the rou...
Chemical kinetics is a branch of chemistry that involves reaction rates and the steps that follow in. It tells you how fast a reaction can happen and the steps it takes to make complete the reaction (2). An application of chemical kinetics in everyday life is the mechanics of popcorn. The rate it pops depends on how much water is in a kernel. The more water it has the quicker the steam heats up and causes a reaction- the popping of the kernel (3). Catalysts, temperature, and concentration can cause variations in kinetics (4).
Firstly, The Strata-X-A SPE cartridges prepared using 3 mL of methanol and equilibrated followed with 3mL of ultrapure water. Next, buckwheat honey samples of 30 g were thoroughly mixed with 120 mL of distilled water, and subsequently the solution was adjusted to pH 7.0 with with 5% ammonium (v/v).The buckwheat honey samples were centrifuged with 8000 × g for 10 min to dislodge the solid particles. The supernatants were was passed through the previously conditioned Strata-X-A SPE cartridges. After the samples was loaded, the columns were washed 4 mL of distilled water for Strata-X-A SPE cartridges to remove compounds of buckwheat honey that were not absorbed on the sorbents . Afterwards, the phenolic compounds were eluted with 5 mL of formic acid:methanol (1:9, v/v). The eluate was evaporated with 99.999% nitrogen and then the residue was redissolved in HPLC-grade methanol with 2% acetic acid with 98% methanol (2 ml). The resulting methanol extracts were filtered through a 0.22-μm filter (Millipore, Carrigtowhill, Cork, Ireland) and stored at 4 °C for further analysis by