Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Lab report essay on calorimetry
Temperature and reaction rate
Temperature and reaction rate
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Recommended: Lab report essay on calorimetry
A calorimeter is used to measure the quantity of thermal energy gained or lost in a chemical change. For this experiment, a “coffee cup” calorimeter (a Styrofoam cup with lids and a thermometer) was used, under constant volume and atmospheric pressure. However, this calorimeter does not retain all the heat as it is not the most optimal choice for a calorimeter, but for this experiment, it is assumed that there is no loss of heat. In relation to heat, one method is to measure the thermal energy is to measure the specific heat capacity of the substance, which is essentially the amount of thermal energy needed to heat one gram of the substance by one degree. For this experiment, by heating the metal and …show more content…
The temperature of the hot metal decreases when put in the cold water, in turn increasing the water’s temperature. Therefore the heat lost from the metal must equate the heat gained by the water, assuming that no heat escaped to the surroundings or the calorimeter. The following equation displays that the heat lost from a system is negative and the heat gained is positive:
-q(metal) = q(metal)
-mmetal x cmetal x Tmetal = mwater x cwater x Twater
Since the experiment is being conducted in a calorimeter, therefore all heat lost from the metal is gained by the water, whose specific heat capacity is 4.81 J/g˚C.
The following equation shows how the molar mass of the metal can be approximated once the specific heat capacity is found: cmetal x MMmetal 25 J/mol˚C where MMmetal, is the molar mass of the metal. This estimation was proposed by Dulong and Petit, showing that one mole of all metals had roughly the same capacity to absorb heat.
The same rule applies in a neutralization reaction ; the heat evolved in the reaction in the reaction must be equal to the heat absorbed by the solution but opposite in sign. The following equation displays that
This is by using the same mass and realizing that the specific heat of both the regular water and the hot water are the same. In our procedure, 100 mL of hot water was mixed with 100 mL of the regular water; therefore, the masses in Equation 3 cancel out (the densities of the water at different temperatures aren’t exactly the same, but the difference is negligible). This leads to the change in temperature of the hot water equaling the negative change of temperature in the regular water, shown as:
For the sample calculations, let’s use the marshmallow as an example. Its initial mass was 0.66 grams and its final mass was 0.36 grams. To calculate the amount burned, subtract 0.36 from 0.66 to get 0.30 grams. (Mass burned = mi- mf). To find the marshmallow’s change in temperature, use the formula (ΔT =
The purpose of this lab was to calculate the specific heat of a metal cylinder
Compared with the accepted value of –601.8 kJ/mol Mg, our experimental error was 2.46%. Introduction In this investigation the change in enthalpy will be determined from the following equation: 2Mg + O2 ® 2MgO, but in an indirect manner. Magnesium metal burns on a bright, extremely hot flame to produce magnesium oxide. It would be difficult to measure the heat of the reaction since the reaction is rapid and occurs at a high temperature (LeMay et al, 1996).
When there is a heat exchange between two objects, the object’s temperature will change. The rate at which this change will occur happens according to Newton’s Law of heating and cooling. This law states the rate of temperature change is directly proportional between the two objects. The data in this lab will exhibit that an object will stay in a state of temperature equilibrium, unless the object comes in contact with another object of a different temperature. Newton’s Law of Heat and Cooling can be understood by using this formula:
Molybdenum is a transition metal. It is represented by the symbol Mo. It is a pure metal that is is silverish white in color and very hard, and has one of the highest melting points of all pure elements at 4753 °F. Its boiling point is 8382 °F. Its density is 10280 kg/m3 and its hardness is 5.5.
This is expressed as Δ +ve (delta positive). If the total energy put in is less than the energy created, then the substance warms up (it is exothermic). This is expressed as Δ -ve (delta negative). I will investigate eight different alcohols using an alcohol or spirit burner, to measure the energy change during burning by measuring the change in temperature of some water held in a container.
During this reaction the solution gained heat. This is what we were monitoring. The reason why the solution gained heat is because the reaction lost heat. Energy is lost when two elements or compounds mix. The energy lost/ gain was heat. Heat is a form of energy as stated above in the previous paragraph. The sign of enthalpy for three out of the four reactions matches what was observed in the lab. For the last reaction, part four, the reaction gained heat not the solution like parts one through three. The negative enthalpy value for part four indicates that the reaction gained
To gain reliable results we needed a temperature rise of 50 degrees centigrade in the quickest time. possible. Then we can do it. Using the Propanol burner with different volumes of water we. tested the flame at varying distances under the calorimeter measured.
Distance between the wick and the base of the copper calorimeter: this distance will be 5cm measured using a ruler and adjusted if necessary. The fuel has been weighed correctly: The fuel will be weighed twice, to ensure accuracy. Make sure there is the right amount of water in the copper calorimeter: to make sure the correct amount of water is in the copper I will use a measuring cylinder, I will accurately fill it to 100cm. I will place the cylinder on a flat surface just to check that the measurement is correct. Make sure fresh water has been placed in the container, so that it isn’t still warm and that the copper calorimeter is also cooled down: by making sure that the water has been tipped away straight after the experiment, should hopefully be enough to make sure it will be replaced, also as we have to note the temperature of the water before we start, it should be noticeable.
Specific heat capacity of aqueous solution (taken as water = 4.18 J.g-1.K-1). T = Temperature change (oK). We can thus determine the enthalpy changes of reaction 1 and reaction 2 using the mean (14) of the data obtained. Reaction 1: H = 50 x 4.18 x -2.12.
The objective of this experiment was to identify a metal based on its specific heat using calorimetry. The unknown metals specific heat was measured in two different settings, room temperature water and cold water. Using two different temperatures of water would prove that the specific heat remained constant. The heated metal was placed into the two different water temperatures during two separate trials, and then the measurements were recorded. Through the measurements taken and plugged into the equation, two specific heats were found. Taking the two specific heats and averaging them, it was then that
Aluminum is a lightweight, silvery metal. The atomic weight of aluminum is 26.9815; the element melts at 660° C (1220° F), boils at 2467° C (4473° F), and has a specific gravity of 2.7. Aluminum is a strongly electropositive metal and extremely reactive. In contact with air, aluminum rapidly becomes covered with a tough, transparent layer of aluminum oxide that resists further corrosive action. For this reason, materials made of aluminum do not tarnish or rust. The metal reduces many other metallic compounds to their base metals. For example, when thermite (a mixture of powdered iron oxide and aluminum) is heated, the aluminum rapidly removes the oxygen from the iron; the heat of the reaction is sufficient to melt the iron. This phenomenon is used in the thermite process for welding iron .
This hypothesis is based on the collision theory, which states that when particles are heated up, they have more kinetic energy. With this high amount of energy, the particles will move at a higher rate with more force, when these particles collide a reaction occurs, therefore increasing the heat increases the reaction rate. The volume and the mass of the MgCl2 formed could have been measured and weighed after the reaction and that value would have been very useful because if it was obtained, it would be easier to manually calculate the theoretical yield of H2 gas rather than using a theoretical value found online. This would have made the percentage yield more accurate.
Colorimetry is the process of determining the concentration of a substance of a substance by measuring the relative of light. The instrument used is called a calorimeter. Colorimetry is the scientific method that is used to classify the colours of the spectrum.