When people think of comparison and likeness, they rapidly jump to immediate observations and obvious detections. They fail to perceive the more imperative and subtle attributes. Whether anybody knows it or not, everything that inhabits the world and even the universe is alike in at least one way. All of these substances contain matter. Matter is the physical substance which encompasses everything, from dusty nebulas to the food on one’s dinner plate. It can be described as anything that has mass and takes up space. Within this matter are infinitesimal particles called atoms. So far, they are what scientists believe to be the smallest part of anything and can even be synthesized in labs (Oxlade 7.) The knowledge scientists possess of atoms is huge, in contrast to their microscopic size. In fact, modern day scientists would not have even obtained this knowledge if preceding chemists and physicists did not unveil what was covered. They paved the way to the vast expansion of awareness and allowed the atom to be seen in its true form. However, these impeccable discoveries did not spawn from a single human being, but rather from a chronological timeline of coincidental events.
The idea that substances contain matter was not pulled out of thin air. Ancient Greek philosophers tried to prove the existence of matter which began with everything being made up of fire or water in different forms. Around 460 BC, a philosopher named Democritus described the tiniest piece of matter as being indivisible. This gave way to the name “atomos” or Greek for “no-cut”. Unfortunately, the most impactful philosopher, Aristotle, did not go along with what Democritus believed. To him, the four elements made up matter. These conflicting arguments surpris...
... middle of paper ...
...unt of textbooks, but eventually grew tired of the subject. Finally, he graduated to an elaborate and more interesting line of research. He decided that he was going to determine the charge of an electron (AIP). His famous “Oil Drop” experiment sparked the attention of many after it was responsible for revealing the charge of an electron or “the elementary electric charge”. Using two metal electrodes, the masses of the droplets of oil were able to be determined by balancing the downward gravitational force with the upward buoyant and electrical forces on them. After repeating the trials, the charges were calculated to be exactly 1.5924 x 10-19 C. Conveniently, J.J. Thomson used a ratio previously that helped Millikan conduct additional research; charge to mass. With this ratio, Millikan also determined that mass of an electron to be 9.109 x 10-31 kg (KentChemistry).
In "Energy Story" uses an explanation of atoms and tells us the parts of an atom and its structure. In the text it
Physicist in the 1900 first started to consider the structure of atoms. The recent discovery of J. J. Thomson of the negatively charged electron implied that a neutral atom must also contain an opposite positive charge. In 1903 Thomson had suggested that the atom was a sphere of uniform positive electrification , with electrons scattered across it like plum in an pudding. (Later known as the Plum Pudding Model)
In 1803 this theory was finalised and stated that (1) all matter is made up of the smallest possible particles termed atoms, (2) atoms of a given element have unique characteristics and weight, and (3) three types of atoms exist: simple (elements), compound (simple molecules), and complex (complex molecules).
Dalton’s atomic theory, which stated “the atoms were tiny, indivisible, indestructible particles” (Bender), differed drastically from that of the Greeks’ in that it “wasn’t just a philosophical statement that there are atoms because there must be atoms” (Bender). Although Aristotle believed that there are four terrestrial elements, earth, water, air, and fire, Democratus believed that “a piece of a substance can be divided into smaller pieces of that substance until we get down to a fundamental level at which you can’t divide the substance up and still have pieces of that substance” (“Atoms”). Aristotle’s theory was popular, but incorrect; Democratus’s was closer to our current theory, yet he remained relatively unpopular and obscure. This demonstrates of the key way in which a personal point of view can, in fact, retard the pursuit of knowledge. The scientist with the better oratory abilities has his theories more widely accepted. Dalton’s own theory, which extrapolated upon four basic
Once the matter was created, according to Descartes, God divides it by introducing motion in the universe:
For centuries, physicists and philosophers alike have wondered what makes up our universe. Aristotle thought that all matter came in one of four forms: Earth, Air, Fire, and Water. Since then we have come a long way, with the discovery of the atoms and the subatomic particles they are made of. We can even guess at what makes up protons and neutrons. We have since then discovered and predicted the existence of particles other than the atom, such as the photon, neutrino, axion, and many others.
The notion of a substance to Descartes was that which could exist independently of anything else. ...
The Atomic Theory began in roughly 400BC with Democritus in Ancient Greece and is universally believed to be correct today. Democritus who was born in 460 BC and died 370 BC and is known as the father of modern science. Democritus proclaimed that everything is made up of atoms. He continued his theory to say that atoms will always be in motion, between atoms there is empty space, atoms are unbreakable, there are an infinite number of atoms all different sizes and shapes. He also said that iron atoms are solid and strong and have hooks to lock them together, water atoms are smooth and slippery, salt atoms have sharp jagged edges because of its taste and air atoms are light and spiralling.
The theory of quantum mechanics has divided the atom into a number of fundamental sub-atomic particles. Although the physicist has shown that the atom is not a solid indivisible object, he has not been able to find a particle which does possess those qualities. Talk of particles, though, is misleading because the word suggests a material object. This is not the intention for the use of the word in quantum physics. Quantum particles are, instead, representations of the actions and reactions of forces at the sub-atomic level. In fact, physicists are less concerned with the search for a material particle underlying all physical objects and more interested in explaining how nature works. Quantum theory is the means that enables the physicist to express those explanations in a scientific way.
“The half-life of a radioisotope is the time required for half the atoms in a given sample to undergo radioactive decay; for any particular radioisotope, the half-life is independent of the initial amount of...
Things are very different from each other, and can be broken down into small groups inside itself, which was then noticed early by people, and Greek thinkers, about 400BC. Which just happened to use words like "element', and `atom' to describe the many different parts and even the smallest parts of matter. These ideas were around for over 2000 years while ideas such as `Elements' of Earth, Fire, Air, and Water to explain `world stuff' came and went. Much later, Boyle, an experimenter like Galileo and Bacon, was influenced much by Democritus, Gassendi, and Descartes, which lent much important weight to the atomic theory of matter in the 1600s. Although it was Lavoisier who had divided the very few elements known in the 1700's into four different classes, and then John Dalton made atoms even more believable, telling everyone that the mass of an atom was it's most important property. Then in the early 1800's Dobereiner noted that the similar elements often had relative atomic masses, and DeChancourtois made a cylindrical table of elements to display the periodic reoccurrence of properties. Cannizaro then determined atomic weights for the 60 or so elements known in the 1860s, and then a table was arranged by Newlands, with the many elements given a serial number in order of their atomic weights, of course beginning with Hydrogen. That made it clear that "the eighth element, starting from a given one, is a kind of a repeat of the first", which Newlands called the Law of Octaves.
The next big step in the discovery of the atom was the scientific test that proved the existence of the atom. After the discovery of the atom we had the discovery of subatomic particles. With the discovery of the subatomic particles came the research, which came from experiments that were made to find out more about the subatomic particles. This research is how we uncovered that most of the weight of an atom is from its nucleus. With the gold foil experiment, tested by Ernest Rutherford, he discovered the existence of the positively charged nucleus. He proved this when the experiment was happening, a small fraction of the photons th...
Energy is an odd concept, it is something that is neither here nor there yet has a profound impact on everything, both organic and inorganic. However, energy surrounds us in more ways than is commonly believed; it is possible that matter is only a form of energy. In fact, according to Albert Einstein, matter and energy are different forms of the same thing (“Do Antimatter and Matter Destroy Each Other?”). Through analyzing the superposition of bosons (particles without mass) and fermions (particles with mass), transformations between energy and matter, the creation of mass, and the mass of energy, the existence of what humans consider to be matter will be questioned.
...the number that Thomson worked out, Millikan later worked out the charge of an electron to be -1.60 x 10-19 (Chang, 1998)
...he same regardless of the type of atom. He then concluded that atoms consist of tiny, negatively charged particles. He, like Chadwick, received a Nobel prize for his work in 1906 .