The Use of Enzymes in Industrial Processes
2. An enzyme is a substance that acts as a catalyst in living
organisms, regulating the rate at which chemical reactions proceed
without itself being altered in the process.
Enzymes are used in industrial processes such as: Baking, Brewing,
Detergents, Fermented products, Pharmaceuticals, Textiles, Starch
processing. Here are a range of processes showing how enzymes are used
Use in Baking-1
The wheat flour used to make bread contains naturally occurring
enzymes that change the starch, protein and fibre in the flour when
water is added. Yeast added to the mixture also contains enzymes,
which ferment the maltose over time, to make the dough rise. The
interaction between different enzymes is complex and the wrong mixture
of enzymes can be damaging, for example, too much enzyme usually
results in the failure of the bread to rise properly. The advantages
of using enzymes is that they can improve consistency and efficiency
and they enable better handling of the dough and the control of
certain characteristics in the finished bread. The use of enzymes in
bread making shows their value in quality control and efficiency of
production.
Use in alcohol-1
In the alcohol industry, fermentation depends on the action of enzymes
helped by the yeasts and bacteria used in the production process. Beer
brewing essentially involves the yeast action on barley, maize,
sorghum, hops or rice. However the traditional malting process is an
expensive inefficient way of manufacturing enzymes. So nowadays
industrial enzymes such as amylases, glucanases and proteases are
added to unmalted barley to produce the same products that malting
would produce by more controlled means. The advantages of using
enzymes in the beverage industry allow it to be more economic and have
consistent quality.
Use in Fruit Juices-1
Enzymes are used in the processing of fruit juices to maximize the
production of clear or cloudy juice. Nearly all fruits contain pectin.
The presence of soluble pectin in squeezed juice causes cloudiness.
The addition of pectin degrading enzymes- pectin methyl esterase
Living organisms undergo chemical reactions with the help of unique proteins known as enzymes. Enzymes significantly assist in these processes by accelerating the rate of reaction in order to maintain life in the organism. Without enzymes, an organism would not be able to survive as long, because its chemical reactions would be too slow to prolong life. The properties and functions of enzymes during chemical reactions can help analyze the activity of the specific enzyme catalase, which can be found in bovine liver and yeast. Our hypothesis regarding enzyme activity is that the aspects of biology and environmental factors contribute to the different enzyme activities between bovine liver and yeast.
Catalase is a common enzyme that is produced in all living organisms. All living organisms are made up of cells and within the cells, enzymes function to increase the rate of chemical reactions. Enzymes function to create the same reactions using a lower amount of energy. The reactions of catalase play an important role to life, for example, it breaks down hydrogen peroxide into oxygen and water. Our group developed an experiment to test the rate of reaction of catalase in whole carrots and pinto beans with various concentrations of hydrogen peroxide. Almost all enzymes are proteins and proteins are made up of amino acids. The areas within an enzyme speed up the chemical reactions which are known as the active sites, and are also where the
Enzymes are biological catalysts, which are proteins that help speed up chemical reactions. Enzymes use reactants, known as the substrates, and are converted into products. Through this chemical reaction, the enzyme itself is not consumed and can be used over and over again for future chemical reactions, but with the same substrate and product formed. Enzymes usually only convert specific substrates into products. Substrates bind to the region of an enzyme called the active site to form the enzyme/substrate complex. Then this becomes the enzyme/products complex, and then the products leave the enzyme. The activity of enzymes can be altered based on a couple of factors. Factors include pH, temperature and others. These factors, if they become
Enzymes are used to carry out reactions in a rapid manner otherwise the reaction would occur very slowly thus not being able to sustain life. Enzymes bind to a substrate that is specific to their task and then conforms into a product that is needed; the enzyme is then able to catalyze more of the same reaction. Enzymes and substrates act as a lock and a key since enzymes are made for a specific substrate and is able to form an enzyme-substrate complex (Department of Biology). Thus changes of the shape of an enzyme can inhibit its ability to catalyze a reaction. If the enzyme shape is alternated due to environmental conditions, it is denatured and can no longer act as a catalyst. Peroxidase is the type of enzyme used in this
Enzymes are proteins that increase the speed of reactions in cells. They are catalysts in these reactions which means that they increase the speed of the reaction without being consumed or changed during the reactions. Cofactors are required by some enzymes to be able to carry out their reactions by obtaining the correct shape to bind to the other molecules of the reaction. Chelating agents are compounds that can disrupt enzyme reactions by binding to metallic ions and change the shape of an enzyme. Catechol is an organic molecule present under the surface of plants. When plants are injured, catechol is exposed to oxygen and benzoquinone is released because of the oxidation of catechol. Catecholase aids in the reaction to produce
I will use a set of five pH's to get my readings from the collected
Enzymes are a biological catalyst, which controls a cellular reaction, they are proteins that act as a catalyst. A catalyst is a substance that speeds up a reaction but does not get used up. It works by reducing the Activation Energy, which is the minimum energy needed for a reaction to happen. A catalyst can make a reaction occur even if it would not happen other wise. Enzymes only affect the speed at which a product is formed, not how much is produced.
Abstract: Enzymes are catalysts therefore we can state that they work to start a reaction or speed it up. The chemical transformed due to the enzyme (catalase) is known as the substrate. In this lab the chemical used was hydrogen peroxide because it can be broken down by catalase. The substrate in this lab would be hydrogen peroxide and the enzymes used will be catalase which is found in both potatoes and liver. This substrate will fill the active sites on the enzyme and the reaction will vary based on the concentration of both and the different factors in the experiment. Students placed either liver or potatoes in test tubes with the substrate and observed them at different temperatures as well as with different concentrations of the substrate. Upon reviewing observations, it can be concluded that liver contains the greater amount of catalase as its rates of reaction were greater than that of the potato.
Background information:. Enzyme Enzymes are protein molecules that act as the biological catalysts. A Catalyst is a molecule which can speed up chemical reactions but remains unchanged at the end of the reaction. Enzymes catalyze most of the metabolic reactions that take place within a living organism. They speed up the metabolic reactions by lowering the amount of energy.
Enzymes are biological catalysts - catalysts are substances that increase the rate of chemical reactions without being altered itself. Enzymes are also proteins that fold into complex shapes that allow smaller molecules to fit into them. The place where these substrate molecules fit is called the active site. The active site is the region of an enzyme where substrate molecules bind and undergo a chemical reaction. The active site consists of residues that form temporary bonds with the substrate and residues that catalyse a reaction of that substrate. (Clark, 2016)
Enzymes are types of proteins that work as a substance to help speed up a chemical reaction (Madar & Windelspecht, 104). There are three factors that help enzyme activity increase in speed. The three factors that speed up the activity of enzymes are concentration, an increase in temperature, and a preferred pH environment. Whether or not the reaction continues to move forward is not up to the enzyme, instead the reaction is dependent on a reaction’s free energy. These enzymatic reactions have reactants referred to as substrates. Enzymes do much more than create substrates; enzymes actually work with the substrate in a reaction (Madar &Windelspecht, 106). For reactions in a cell it is important that a specific enzyme is present during the process. For example, lactase must be able to collaborate with lactose in order to break it down (Madar & Windelspecht, 105).
Enzymes in general are very interesting to learn from and are fundamental in carrying out processes in various organisms. Enzymes are proteins that control the speed of reactions, they help quicken the rate of the reaction and also help cells to communicate with each other. There are 3 main groups of enzymes, first are the metabolic enzymes that control breathing, thinking, talking, moving, and immunity. Next are the digestive enzymes that digest food and normally end with –ase, there are 22 known digestive enzymes and examples of these are Amylase, Protease, and Lipase. The final group are the Food or plant enzymes which is what my enzyme that I’m studying falls under. Papain gets its name because it comes from papaya fruit, its main purpose is to break down proteins and break peptide bonds however it is not only used in the Papaya fruit and has many external uses. It was also very helpful in the 1950s when scientists were trying to understand enzymes. It also helps us to this day understand Protein structural studies and peptide mapping. Without enzymes, reactions in the body would not happen fast enough and would tarnish our way of life which is why it is vital that we study and learn from them.
The Advantages and Disadvantages of Using Enzymes in Medicine and Industry What is an enzyme? = == ==
Enzymes have been used in research, mainly because of their ability to facilitate reactions without being changed themselves as well as their ability to speed up these reactions, which would otherwise take a much longer period of time to complete. And it is these two features that compel me to conduct further research into the applications of enzymes.
Enzymes are protein molecules that are made by organisms to catalyze reactions. Typically, enzymes speeds up the rate of the reaction within cells. Enzymes are primarily important to living organisms because it helps with metabolism and the digestive system. For example, enzymes can break larger molecules into smaller molecules to help the body absorb the smaller pieces faster. In addition, some enzyme molecules bind molecules together. However, the initial purpose of the enzyme is to speed up reactions for a certain reason because they are “highly selective catalysts” (Castro J. 2014). In other words, an enzyme is a catalyst, which is a substance that increases the rate of a reaction without undergoing changes. Moreover, enzymes work with