When an object is dragged across a surface, the force of friction that must be overcome depends on the normal force as F=uN and the normal force is given by N=
Wy, the vertical component of weight pointing perpendicular to the surface. When the angle of an inclined plane changes, the normal force changes and so does the friction.
In this lab, you will change the angle of an inclined plane and observe how weight is resolved into its components, vertical (Wy) and horizontal (Wx) using the basic trig functions.
Procedure: Play with the Sims Motion The Ramp: Forces and motion  (not just the Ramp version)

Be sure to stay in the  part of the simulation. Make sure you pick wood, not ice for friction. Try moving the object using the slider controls.
In this experiment we positioned a marble ball on a wooden roller coaster positioned on a physics stand in the sixth hole. Throughout the experiment, we used an electronic timer to record the time of the marble where it passed through the light beam of its clamp. We positioned the clamp at a certain point on the roller coaster and measured the distance from the marble to the clamp; the height of the clamp; and finally the time the ball traveled through the clamp. After we recorded these different figures we calculated the speed of the marble from the given distance traveled and the time. We repeated the step 14 times, then proceeded to graph the speed and the height. Next, we took the measurements of position of the clamp, height, and speed and calculated the potential energy, the kinetic energy, and the total energy. Total energy calculated as mentioned before. Potential energy is taking the mass (m) which is 28.1g times gravity (g) which is 9.8 m/s2 times the height. Kinetic energy is one-half times the mass (m) times velocity (v2). Finally we graphed the calculated kinetic, potential, and total energies of this experiment.
In order to begin their outdoor adventure, a skier must first face the forces of static friction. Static friction is the force that keeps the skier at rest. As the skier overcomes the static friction there is a point where the coefficient of friction is greater than that of the kinetic friction that resists the skiers motion. It is clear to see this concept in the figure below.
We ran into Newtons First Law, which claims that an object resists change in motion, as the marble rolled down the floor it didn’t stop until it was acted against by friction. As we moved on, Newtons Second Law came into play when we were creating our lever as we need a ball that would roll down with enough acceleration that it could knock down the objects. Newton’s second law claims, that F=MA. So, we choose a golf ball since it would have more mass than a rubber ball, but it would have less acceleration when the lever was started. This way, it would knock the upcoming objects. Newtons Third Law claims that every action yields an equal and opposite reaction. This is proven in our Rube Goldberg Machine when the small car was rolling down the tracks as the wheels pushes against the track making the track move backwards. The track provides an equal and opposite direction by pushing the wheels forward.
the length of the slope can be used to calculate the speed of the car
11. What is the difference between a. and a. Place more books underneath the raised end of the ramp. increase the height at the summit by 10cm. Use the metre stick to
The independent variables in this experiment are the height of the ramp, the length of the ramp, the surface of the ramp, the weight of the marble, the size of the marble, and the surface of the marble. The dependent variable is the distance the ball rolls. The controlled variables are the starting position of the ball, the angle of the ramp, and the surface of the floor. Units: The height of the ball from the ground, the height of the ramp, and the distance the ball rolls will be measured in centimeters (cm).
In the experiment these materials were used in the following ways. A piece of Veneer wood was used as the surface to pull the object over. Placed on top of this was a rectangular wood block weighing 0.148-kg (1.45 N/ 9.80 m/s/s). A string was attached to the wood block and then a loop was made at the end of the string so a Newton scale could be attached to determine the force. The block was placed on the Veneer and drug for about 0.6 m at a constant speed to determine the force needed to pull the block at a constant speed. The force was read off of the Newton scale, this was difficult because the scale was in motion pulling the object. To increase the mass weights were placed on the top of the ...
I have chosen to look at the effect of the weight applied, as it is a
The file labeled “Newton’s 2nd Law” is to be opened. The cart’s mass along with the attachment of the sensor and the accelerometer are to be measured and recorded. Being carefully verified in order, the track is leveled and the Force Sensor is set to 10N and connected to...
The force on a small object is bigger than the same force acting on a
The application of force on an object causes an acceleration of that object. Yet, force is not the only factor in the movement, or acceleration of an object. The two main influences on the acceleration of an object are net force and mass. For example, net force is directly proportional to acceleration while mass is inversely proportional to acceleration. Other factors such as the friction, air or fluid resistance, and pressure effect the acceleration as well. All of these factors do not work against or in accordance with acceleration in the same way. Friction works in opposition to acceleration. Friction involves two objects that are in direct contact with on another but are moving in different directions. Involved with friction is air and fluid resistance. Fluid resistance, such as liquids or gases, focuses on when the object is moving in the opposite direction of a fluid flow or through a dense area of fluid. Air resistance involves movement through the air. The most noticeable effect of air resistance is when and object travels into a strong breeze or wind. And finally pressure, pressure refers to an applied force. With pressure you will find that the overall weight of and object doesn’t change no matter how you stand or lay it but you will feel more pressure from that same object depending on the force compared to the amount of surface area. The weight of the object
The mean of two perpendicular measurements was taken. 3. The hanger with appropriate amount of slotted mass was put on the tile. Use the balance to measure the total mass m. 4.
We did not have a specific place on the ramp at where we would drop the mass pieces onto the trolley. We just dropped them anywhere on the ramp. The position of the collisions was different for all three trials which might have affected the results because the distance after the collisions was different for every collision. There was no consistency.
... resultant speed and, by the definition of the tangent, to determine the angle of which the object is launched into the air.
Physics began when man first started to study his surroundings. Early applications of physics include the invention of the wheel and of primitive weapons. The people who built Stone Henge had knowledge of physical mechanics in order to move the rocks and place them on top of each other. It was not until during the period of Greek culture that the first systematic treatment of physics started with the use of mechanics. Thales is often said to have been the first scientist, and the first Greek philosopher. He was an astronomer, merchant and mathematician, and after visiting Egypt he is said to have originated the science of deductive geometry. He also discovered theorems of elementary geometry and is said to have correctly predicted an eclipse of the sun. Many of his studies were in astronomy but he also observed static electricity. Phythogoras was a Greek philosopher. He discovered simple numerical ratios relating the musical tones of major consonances, to the length of the strings used in sounding them. The Pythagorean theorem was named after him, although this fundamental statements of deductive geometry was most likely first an idea from Egyptian methods of measurements. With the help of his followers he discovered that the earth was a sphere, but he did not believe it revolved around the sun.