Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
How does concentration affect reaction rates
The effect of temperature on reaction rates
Effect temperature has on rate of reaction
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Recommended: How does concentration affect reaction rates
The Enzyme Concentration and The Volume of Juice As the enzyme concentration increases so too does the volume of juice. This is because as the concentration of enzyme molecules increase there is more chance of a collision with an apple substrate molecule. If the chance of a collision is increased then the number of collisions will increase resulting in a higher rate of reaction. The enzyme combines with the substrate to form an enzyme-substrate complex. Enzyme + Substrate ¬¬¬> Enzyme-Substrate Complex The enzyme-substrate complex then breaks down to give the product and releases the enzyme in an unchanged form: Enzyme-Substrate Complex ¬¬¬> Product + Enzyme So I can conclude that the rate of reaction is directly proportional to the concentration of the enzyme. This is clear from the results that I myself obtained and from the class average. We can see that as the concentration of the enzyme increases so does the volume of juice (product) produced from the apple. This is because the more enzymes that are present the greater the number of active sites available for the substrate to fit into under the lock-and-key hypothesis, thus forming a greater number of enzyme-substrate complexes and thus forming a higher product rate (apple juice). Enzyme concentration is directly proportional to the rate of reaction provided the substrate concentration is maintained at a high level and the pH and temperature are kept constant. We know that the substrate concentration is maintained at the same level in all samples, this done by ensuring that all samples are of equal mass and we know that all the samples were placed in an incubator at 40°C thus ensuring that the temperature effects the rate of reaction in all samples in the same way. Graph: - From 0% ¬> 0.25% concentration we can see the greatest rate of reaction as there is an abundance of substrate molecules available to combine with the active site of the enzymes producing a large gradient on the graph. As concentration increases from 0.25% ¬> 0.
After conducting this experiment and collecting the data I would have to say that the optimal temperature for enzyme activity would have to be room temperature which in my experiment was thirty-four degrees Celsius. I came to this answer because the glucose test strip showed that at room temperature there was more glucose concentration that at either of the other temperatures. Due to temperature extremes in the boiling water the enzymes could no longer function because the breakdown of lactose stopped. The cold water also hindered the breakdown of the lactose but as the water warmed the enzymes were more active which can be seen in the results for the cold water at 20 minutes B. Describe the relationship between pH and the enzymatic activity of lactase.
For example, substrate concentration, enzyme concentration, and temperature could all be factors that affected the chemical reactions in our experiment. The concentration of substrate, in this case, would not have an affect on how the bovine liver catalase and the yeast would react. The reason why is because in both instances, the substrate (hydrogen peroxide) concentration was 1.5%. Therefore, the hydrogen peroxide would saturate the enzyme and produce the maximum rate of the chemical reaction. The other factor that could affect the rate of reaction is enzyme concentration. Evidently, higher concentrations of catalase in the bovine liver produced faster reactions, and the opposite occurs for lower concentrations of catalase. More enzymes in the catalase solution would collide with the hydrogen peroxide substrate. However, the yeast would react slower than the 400 U/mL solution, but faster than the 40 U/mL. Based on this evidence, I would conclude that the yeast has a higher enzyme concentration than 40 U/mL, but lower than 400
Catalase is a common enzyme that is produced in all living organisms. All living organisms are made up of cells and within the cells, enzymes function to increase the rate of chemical reactions. Enzymes function to create the same reactions using a lower amount of energy. The reactions of catalase play an important role to life, for example, it breaks down hydrogen peroxide into oxygen and water. Our group developed an experiment to test the rate of reaction of catalase in whole carrots and pinto beans with various concentrations of hydrogen peroxide. Almost all enzymes are proteins and proteins are made up of amino acids. The areas within an enzyme speed up the chemical reactions which are known as the active sites, and are also where the
Input variables In this experiment there are two main factors that can affect the rate of the reaction. These key factors can change the rate of the reaction by either increasing it or decreasing it. These were considered and controlled so that they did not disrupt the success of the experiment. Temperature-
This evidence alone suggests that higher increases in substrate concentration causes smaller and smaller increases in enzyme activity. As substrate concentration increases further, some substrate molecules may have to wait for an active site to become empty as they are already occupied with a substrate molecule. So, the rate of the reaction starts to level off resulting in a plateau in the graphs. This means that the reaction is already working at its maximum rate, and will continue working at that rate until all substrates are broken down. The only way the reaction rate would increase, is if more enzyme was added to the solution. This confirms that increases in substrate concentration above the optimum does not lead to greater enzyme activity. Therefore, the rate of reaction is in proportion to the substrate
Enzymes are proteins that increase the speed of reactions in cells. They are catalysts in these reactions which means that they increase the speed of the reaction without being consumed or changed during the reactions. Cofactors are required by some enzymes to be able to carry out their reactions by obtaining the correct shape to bind to the other molecules of the reaction. Chelating agents are compounds that can disrupt enzyme reactions by binding to metallic ions and change the shape of an enzyme. Catechol is an organic molecule present under the surface of plants. When plants are injured, catechol is exposed to oxygen and benzoquinone is released because of the oxidation of catechol. Catecholase aids in the reaction to produce
Purpose: The purpose of this lab is to explore the different factors which effect enzyme activity and the rates of reaction, such as particle size and temperature.
In this investigation, the concentration of enzyme will be inversely proportional to the time taken for starch to be digested, until at a certain point where it will level out. It will level out because, all the substrates would have been used up, therefore there will be no more substrates for the enzymes to work on. In effect, the concentration of the substrate will act as a limiting factor. However, enzyme concentration will be directly proportional to the rate of reaction.
Investigating the Effect of Substrate Concentration on Catalase Reaction. Planning -Aim : The aim of the experiment is to examine how the concentration of the substrate (Hydrogen Peroxide, H2O2) affects the rate of reaction. the enzyme (catalase).
According to the graph on amylase activity at various enzyme concentration (graph 1), the increase of enzyme dilution results in a slower decrease of amylose percentage. Looking at the graph, the amylose percentage decreases at a fast rate with the undiluted enzyme. However, the enzyme dilution with a concentration of 1:3 decreased at a slow rate over time. Additionally, the higher the enzyme dilution, the higher the amylose percentage. For example, in the graph it can be seen that the enzyme dilution with a 1:9 concentration increased over time. However, there is a drastic increase after four minutes, but this is most likely a result of the error that was encountered during the experiment. The undiluted enzyme and the enzyme dilution had a low amylose percentage because there was high enzyme activity. Also, there was an increase in amylose percentage with the enzyme dilution with a 1: 9 concentrations because there was low enzyme activity.
The 'lock and key' hypothesis explains how enzymes only work with a specific substrate. The hypothesis presents the enzyme as the 'lock, and the specific substrate as 'key'. The active site binds the substrate, forms a product, which is then released. Diagram 1- a diagram showing the 'lock and key' mechanism works
On a two pieces of paper, we drew a cross and place a beaker on top of
In this experiment, researchers used different measurements of catechol and 1cm of potato extract. Researchers hypothesized that the increase in substrate would level out the enzyme activity by
As Enzyme concentration increases, enzyme activity will increase, because there are more enzymes to catalyze reactions.
The higher the concentration of pectinase enzyme, the greater the yield of apple juice there will be.