The Effects of Temperature on the Action of Enzymes
Aim: To see how changing the temperature affects the action of the
enzyme.
------------------------------------------------------------------
MY HYPOTHESIS: I think that as the temperature increase the quicker
the reaction will become
-------------------------------------------------------------------
Outline of method
You add ice to 150cm³ of cold water in a beaker to bring its
temperature down to 10cº. Then a fixed volume of hydrogen peroxide is
added to a pre-weighed piece of liver contained in a test tube. Then
the maximum height reached by the foam produce was tabulated. For
temperatures that were needed to be higher then room temperature,
boiling water was heated in a kettle then added to reach the desired
temperature. The procedure was repeated at the following additional
temperatures: 10cº, 20ºC, 30ºC, 40ºC, 50ºC, 60ºC and 70ºC.
Key variables
1.The independent variable, the thing that you change.
2.The dependent variable, the thing that changes because you have
changed independent variable.
3.They control the thing(s) that you keep the same to make a fair
test.
Explained in detail
The thing that I change is the temperature.
The dependent variable should be the height of the foam.
The controls are the same volume of peroxide, the same concentration
is the catalyse and of hydrogen peroxide and the same mass of liver.
Catalyst explained
Catalyst is a substance that increases the rate of a chemical
reaction. It does this by reducing the activation energy, but which is
left unchanged by the reaction.
What affect does catalyse have?
Catalyse is a very fast reacting enzyme, it is found in numerous
living cells, it breaks down hydrogen peroxide to water and oxygen.
One molecule of it can deal with six million molecules of hydrogen
peroxide in 1 minute. Hydrogen peroxide is toxic so needs to be
changed into non-toxic substances.
Fair test
In this Investigation I will keep constant the following;
The same surface area of the liver.
After conducting this experiment and collecting the data I would have to say that the optimal temperature for enzyme activity would have to be room temperature which in my experiment was thirty-four degrees Celsius. I came to this answer because the glucose test strip showed that at room temperature there was more glucose concentration that at either of the other temperatures. Due to temperature extremes in the boiling water the enzymes could no longer function because the breakdown of lactose stopped. The cold water also hindered the breakdown of the lactose but as the water warmed the enzymes were more active which can be seen in the results for the cold water at 20 minutes B. Describe the relationship between pH and the enzymatic activity of lactase.
The results of this experiment showed a specific pattern. As the temperature increased, the absorbance recorded by the spectrophotometer increased indicating that the activity of peroxidase enzyme has increased.At 4C the absorbance was low indicating a low peroxidase activity or reaction rate. At 23C the absorbance increased indicating an increase in peroxidase activity. At 32C the absorbance reached its maximum indicating that peroxidase activity reached its highest value and so 32 C could be considered as the optimum temperature of peroxidase enzyme. Yet as the temperature increased up to 60C, the absorbance decreased greatly indicating that peroxidase activity has decreased. This happened because at low temperature such as 4 C the kinetic energy of both enzyme and substrate molecules was low so they moved very slowly, collided less frequently and formed less enzyme-substrate complexes and so little or no products. Yet, at 23 C, as the temperature increased, enzyme and substrate molecules
For example, substrate concentration, enzyme concentration, and temperature could all be factors that affected the chemical reactions in our experiment. The concentration of substrate, in this case, would not have an affect on how the bovine liver catalase and the yeast would react. The reason why is because in both instances, the substrate (hydrogen peroxide) concentration was 1.5%. Therefore, the hydrogen peroxide would saturate the enzyme and produce the maximum rate of the chemical reaction. The other factor that could affect the rate of reaction is enzyme concentration. Evidently, higher concentrations of catalase in the bovine liver produced faster reactions, and the opposite occurs for lower concentrations of catalase. More enzymes in the catalase solution would collide with the hydrogen peroxide substrate. However, the yeast would react slower than the 400 U/mL solution, but faster than the 40 U/mL. Based on this evidence, I would conclude that the yeast has a higher enzyme concentration than 40 U/mL, but lower than 400
The increase in temperature will therefore increase the rate of reaction. As this is the variable I am measuring I will not keep the temperature constant and therefore I will be varying it. Volume of water- if the volume of the water is increased there is more likelihood that there will be more collisions.
Animal metabolism consists of the utilization of nutrients absorbed from the digestive tract and their catabolism as fuel for energy or their conversion into substances of the body. Metabolism is a continuous process because the molecules and even most cells of the body have brief lifetimes and are constantly replaced, while tissue as a whole maintains its characteristic structure. This constant rebuilding process without a net change in the amount of a cell constituent is known as dynamic equilibrium (Grolier1996). In the combustion of food, oxygen is used and carbon dioxide is given off. The rate of oxygen consumption indicates the energy expenditure of an organism, or its metabolic rate (Grolier1996).
The Effect of Temperature on an Enzyme's Ability to Break Down Fat Aim: To investigate the effect of temperature on an enzyme’s (lipase) ability to break down fat. Hypothesis: The graph below shows the rate increasing as the enzymes get closer to their optimum temperature (around 35 degrees Celsius) from room temperature. The enzyme particles are moving quicker because the temperature increases so more collisions and reactions occur between the enzymes and the substrate molecules. After this the graph shows the rate decreasing as the enzymes are past their optimum temperature (higher than). They are getting exposed to temperatures that are too hot and so the proteins are being destroyed.
The Effect of Temperature on the Rate of Respiration in Yeast There are two types of respiration in yeast: Aerobic: [IMAGE] Anaerobic: Glucose [IMAGE] Carbon dioxide + ethanol + energy Respiration is controlled by enzymes, which are proteins which speed up one or more biological reactions. Within any cell many chemical reactions are going on at any one time. Yeast has many different types of enzymes that speed up respiration. Prediction I predict that as temperature increases, the rate will also increase, until a certain optimum temperature, after which, the rate will decrease until the rate is zero as respiration has stopped completely. Reason
Abstract: Enzymes are catalysts therefore we can state that they work to start a reaction or speed it up. The chemical transformed due to the enzyme (catalase) is known as the substrate. In this lab the chemical used was hydrogen peroxide because it can be broken down by catalase. The substrate in this lab would be hydrogen peroxide and the enzymes used will be catalase which is found in both potatoes and liver. This substrate will fill the active sites on the enzyme and the reaction will vary based on the concentration of both and the different factors in the experiment. Students placed either liver or potatoes in test tubes with the substrate and observed them at different temperatures as well as with different concentrations of the substrate. Upon reviewing observations, it can be concluded that liver contains the greater amount of catalase as its rates of reaction were greater than that of the potato.
What Affects the Rate of Breakdown of Hydrogen Peroxide by Enzymes Aim = == The aim of this experiment is to find out how temperature and concentration affect the breakdown of hydrogen peroxide by an enzyme (yeast). I hope to achieve reliable results that will confirm my predictions.
The Effect of Temperature on the Activity of the Enzyme Catalase Introduction: The catalase is added to hydrogen peroxide (H²0²), a vigorous reaction occurs and oxygen gas is evolved. This experiment investigates the effect of temperature on the rate at which the enzyme works by measuring the amount of oxygen evolved over a period of time. The experiment was carried out varying the temperature and recording the results. It was then repeated but we removed the catalase (potato) and added Lead Nitrate in its place, we again tested this experiment at two different temperatures and recorded the results. Once all the experiments were calculated, comparisons against two other groups were recorded.
I shall be measuring how much gas is given off. This will be done by measuring the amount of froth on the surface of the liquid. The oxygen released is collected in the form of these bubbles. The equation for the reaction is: (catalase) [IMAGE] H2O2 2H2O + O2 (hydrogen peroxide) (2 part water) (oxygen) I will change the concentration of H2O2 and O2 (making sure the volume stay the same, when one part of a H2O2 particle is taken, an O2 particle is added. Prediction
The Effect of pH on Enzyme Activity. pH is a measure of the concentration of hydrogen ions in a solution. The higher the hydrogen ion concentration, the lower the pH. Most enzymes function efficiently over a narrow pH range. A change in pH above or below this range reduces the rate of enzyme reaction. considerably.
The pH of the solution would alter the rate of the reaction if it was
Independent variables: The temperature of hcl gas will be decreased and increased throughout the experiment.
The type seen throughout the human body involve enzyme catalysis. Enzymes are present throughout many key bodily processes and keep the body from malfunctioning. An enzyme catalyzes a reaction by having the substrate bind to its active site.2 This is known as the Lock and Key Theory, which states that only the correctly oriented key (substrate) fits into the key hole (active site) of the lock (enzyme).2 Although this theory makes sense, not all experimental data has explained this concept completely.2 Another theory to better accurately explain this catalysis is known as the Induced-Fit Theory.2 This theory explains how the substrate determines the final form of the enzyme and shows how it is moderately flexible.2 This more accurately explains why some substrates, although fit in the active site, do not react because the enzyme was too distorted.2 Enzymes and substrates only react when perfectly aligned and have the same