In part A of the lab, our group measured the effects of emulsification on the digestion of lipids in the presence of cholic acid, a purified bile salt, and distilled water. The tube containing vegetable oil and no bile began to separate into two layers within the first minute of being mixed together. Although there were no clear distinctions within the first 15 seconds, by the fifth minute, there appeared two separate layers; one resulted in a yellow appearance while the other one was clear. As expected and predicted in our hypothesis, it was easier to notice the separation of the two layers in the tube without any bile salts because lipids are hydrophobic meaning that oils are more difficult to digest. However, due to the fact that when in the presence of bile salts, lipids …show more content…
Before this lab, I had a minimal understanding of how lipids were broken down by enzymes. I also knew little about what enzymes help break down carbohydrates, fats, and proteins; however, physically seeing it gave me a better understanding. The most pivotal role of digestive enzymes is to aid in the digestion and breakdown of foods and nutrients. Bile salts play an important role in emulsifying fats and aid in increasing lipid digestion rate. The pH of the environment in our digestion tract also affects digestive enzymes since they are more effective at certain pH levels; for example, pepsin is more active in acidic environments whereas trypsin works more effectively in basic conditions. Before this lab, I did not realize how pivotal pH environment is to help digestion. I also learned that another factor that helps aid in increasing the rate of digestion is increasing the surface area of food particles to certain digestive enzymes. It was interesting to see the reactions of an intact and chopped potato. The cutting and mincing of food will help increase this surface area and expose more food to be digested; hence, it is important to properly chew food instead of rushing while
Now the Cheetos have entered the stomach. The process of breaking down carbohydrates has already begun in the mouth and now more chemical and mechanical digestion will take place in the stomach. Once the bolus has entered the stomach, it mixes with gastric juice, starts protein digestion, and absorbs a limited amount. Here the chief cells secrete the inactive enzyme pepsinogen and the parietal calls secrete hydrochloric acid. When mixed together, they create pepsin. The pepsin works to breakdown the two grams of protein present in the Cheetos. Hormones are also present in the stomach and aid in the digestion process. The hormone, gastrin, increases the secretory activity of gastric glands. In the stomach, some salt from the Cheetos is absorbed through the wall. The Cheetos that entered the stomach has no...
During digestion, the body breaks down food into smaller molecules that could then be used by the body’s cells and tissues in order to perform functions. This starts off in the mouth with the physical movements of chewing and the chemical breakdown by saliva. Enzymes in the stomach break food down further after traveling from the mouth through the esophagus. The food from here then moves into the small intestine, where pancreatic juices and enzymes dissolve proteins, carbohydrates, and fibers, and bile from the liver breaks down fats into these small molecules. Any portion of the fibers or food that were unable to be broken down are passed from the small intestine to the large intestine, which is where the digestive tract transitions into the excretory tract, then the colon and out of the rectum. Any liquids that have been stripped of their nutrients by the body proceed from the stomach to the kidneys. In the kidneys, sodium ions (Na+), uric acid, and urea are exchanged with water, which moves urinary bladder and is excreted through the
come along, this is when the bile is released to digest the fat. The same
1972 fluid mosaic model. Lipids are commonly recognized as fats, oils, wax, etc. There are three
Abstract: Enzymes are catalysts therefore we can state that they work to start a reaction or speed it up. The chemical transformed due to the enzyme (catalase) is known as the substrate. In this lab the chemical used was hydrogen peroxide because it can be broken down by catalase. The substrate in this lab would be hydrogen peroxide and the enzymes used will be catalase which is found in both potatoes and liver. This substrate will fill the active sites on the enzyme and the reaction will vary based on the concentration of both and the different factors in the experiment. Students placed either liver or potatoes in test tubes with the substrate and observed them at different temperatures as well as with different concentrations of the substrate. Upon reviewing observations, it can be concluded that liver contains the greater amount of catalase as its rates of reaction were greater than that of the potato.
Almost everybody knows the negative effects bad cholesterol has on the body. Bad cholesterol has to do with low-density lipoprotein’s molecular transport deposits that thicken in the walls of the arteries hindering the flawless passage of blood affecting the atherogenic status of the arterial walls. But not everybody fully appreciates the important role cholesterol plays in the body. This non-soluble, waxy substance is essential to aid in the building of membranes, the manufacture of bile, strengthening of cell walls and nerve sheaths, and in the production of hormones.
Provide muscle energy, fuel for the nerve system, the fat metabolism and protect the protein to been used as energy
In order for this breakdown to happen, the ‘tube’ through which the food travels requires assistance from a number of other digestive organs starting with the salivary glands, and later receiving
The data presented in this table supports the conclusion of Purdy et al. (2005) that the inclusion of cholesterol to the CHO cell membranes will result in significant changes to the membrane, confirming the established function of cholesterol as a regulator of membrane fluidity.
Imagine you are eating a sandwich containing wheat bread, ham, lettuce, and Swiss cheese. Do you ever wonder where the nutrients go from all of the previous listed ingredients? Well, when a bite of this sandwich is taken, the mouth produces a saliva enzyme called amylase. This enzyme immediately goes to work by breaking down the carbohydrates that are in the bread. Once, the bite is completely chewed, the contents then are swallowed and go down the esophagus and begin to head towards the upper esophageal sphincter and the is involuntarily pushed towards the stomach. The next passage for the sandwich is to go through the lower esophageal sphincter; which transports the sandwich into the stomach.
The human digestion system is very complex. It starts with the mouth, salivary glands, pharynx, esophagus, stomach, liver, pancreas, gallbladder, small intestine, large intestine, then ends/exits with the anus. Each step is essential to the whole system. For example, the mouth chews food and mixes it with saliva produced by the salivary glands, and then the pharynx swallows chewed food mixed with saliva, this is followed by the food traveling through the esophagus to the stomach where the food gets a bath and mixes with acids and enzymes. After the stomach, the liver, pancreas, and gallbladder produce, stores, and releases bile and bicarbonates. Bile is produced in the liver and aids in digestion and absorption of fat while the gallbladder stores bile and releases it into the small intestine when needed. Following the process into the small intestine, this is where nutrients will be absorbed into the blood or lymph (most digestion occurs here). Next is the large intestine this is where water and some vitamins and minerals are absorbed. Finally, it is the end of the road, the anus. At...
Without enzymes, reactions wouldn’t occur and living organisms would die. For instance, the enzyme in the stomach breaks down large molecules to smaller molecules to absorb nutrition faster. Researchers experimented with enzyme activity with a potato extract. Researchers will test enzyme activity by increasing and decreasing pH levels, lowering and increasing temperature, and substrate concentration effects. In the first experiment, researchers hypothesized whether different pH levels would change how much Benzoquinone are created and how will the enzymes function in neutral pH levels than higher and lower levels. Researchers used potato extract and different levels of pH to test their hypothesis. In addition, researchers questioned at what temperature does the greatest amount of potato extract enzyme activity take place in. Researchers then hypothesized that the results would indicate the greatest amount of potato enzyme activity level will take place in room temperature. In this experiment, researchers used potato extract and different temperature levels to test the hypothesis. Moreover, researchers wanted to test the color intensity scale and how specific catechol oxidase is for catechol. In this experiment, researchers used dH2O, catechol solution, hydroquinone, and potato extract. Lastly, researchers tested the substrate concentration and how it has an effect on enzyme activity. In this experiment researchers used different measurements of catechol and 1cm of potato extract. Researchers hypothesized that the increase o substrate would level out the enzyme activity
The liver secretes bile in two stages; in the initial stage the hepatocytes produce a secretion containing large amounts of bile acids, cholesterol metabolism and other organic constituents that are discharged into the bile canaliculus, that then flow into terminal bile ducts, and finally to the hepatic duct and common bile duct, from which it is emptied directly into the duodenum or diverted through the cystic duct into the gallbladder. In the second stage of bile secretion, the epithelial cells of the bile duct, cholangiocytes contribute to bile secretion via the release of an aqueous solution of bicarbonate (Fitz,
Emulsions are important in food science. Not only do they provide an important sensory aspect in many foods, but a functional one as well. From hollandaise to ice cream, getting hydrophobic and hydrophilic molecules to play nice with each other can be a difficult task. According to Modern Cuisine, it was previously thought that Hollandaise, a classic French emulsion of egg and butter, could only be made by letting butter drip from natural heat of the hand. Of course, modern science has taught us that, with the use of emulsifiers, these mystic mixtures can be created without the voodoo and magic once thought necessary. This paper will discuss emulsions as applied to hollandaise, chocolate, hot dogs and their characteristic pH, moisture content, shelf stability and quality of viscosity. An explanation of the chemical processes that occur between the raw ingredients of each food and the relationship between the structure and function of their components will be explained, as well as the importance of the chemical changes that take place during production. The characteristics that define these foods as emulsions will be compared and contrasted to further elucidate the mystery of the emulsion. Bon Appetite!
Nutrients are the chemicals that humans need to live and grow. Humans obtain their nutrients from the food and water that they drink. They are used to build and repair tissues and regulate body processes and are converted to and used as energy. Lipids are a category of nutrients. Lipids consist of fats, oils, and waxes and are very important for are body’s health. Lipids are important for the human body because they are for storing energy, they’re good at storing energy because they can concentrate a group of calories in a smaller area.