Azo compounds are those having R-N=N-R΄ functional group, where R and R΄ can be either aryl or alkyl. It is a derivative of Diazene (Diimide) NH=NH, where both the hydrogen replaced by hydrocarbonyl group e.g PhN=NPh (Azobenzene or diphenyldiazene). The N=N is called as azo group. As a consequence of π – delocalization phenyl azo compounds have vivid colour like red, yellow and orange, due to this, it is used as a dye and known as azo dye [3]. Azo compounds have been incorporated into a wide variety of materials and molecular architectures, dendrimers, polymers and molecular glasses. Due to clean and efficient photochemical isomerisation and substantial change in material properties during light irradiation it has been investigated as an active …show more content…
[10, 11] 1.5 Synthesis of Azo compounds There are many methods available for the synthesis of azo compounds but the classical methods for the synthesis of azo compounds are azo coupling reaction (coupling of Diazonium salt with activated aromatic compounds), Wallach reaction (transformation of azoxybenzenes in to 4-hrdroxy substituted in acid media), and Mills reaction (reaction between aromatic nitroso derivative and aniline), which are mostly used in the present investigation as well. a) Azo coupling reaction Most of the azobenzenes are obtained by this reaction. The methodology is based upon the initial diazotization of an aromatic primary amine at low temperature around 0-5 oC to form diazonium salt, which then reacts with electron rich aromatic nucleophile. Reaction times are usually short for this method and expected yields are usually high. Diazonium salts are weak electrophiles that react with the electron rich species, such as substituted arenes having electron donor group like amine and hydroxyl to give desire azobenzene derivatives. (Fig.1) Normally such type of substitution takes place at the para position to the electron donor group on the activated aromatic ring, acting as a nucleophile. When the position is already occupied then substitution takes place at ortho position. …show more content…
The aromatic nitroso derivatives can be prepared by oxidation of aromatic methyl hydroxylamine and with tert-butyl hypochlorite. This type of reaction is so fast and carried out at very low temperature around – 78 oC with high dilution to prevent over oxidation. The reaction between nitroso derivatives with aniline leads to the azobenzenes with good yield. Instead of tert-butyl hypochlorite, many other oxidising agents used for the formation of nitroso derivatives like ferric chloride, Caro’s acid (H2SO5), sodium or potassium dichromate and sulphuric acid, acetic acid/H2O2, m-chloroperbenzoic acid, potassium permanganate, ferricchloride, diethyl azodicarboxylate, iodine/NaI/NaOAc, silver carbonate, (diacetoxyiodo)benzene, 2,3-dichloro-5,6- dicyanobenzoquinone (DDQ) and peroxyformic acid also. Oxone are efficient to form nitroso arenes, which condense with aniline to form azobenzene in good yield (Fig 3). The mechanism of Mills reaction involves the attachment of aniline on the nitroso derivatives in acid media that leads to
In a small reaction tube, the tetraphenylcyclopentadienone (0.110 g, 0.28 mmol) was added into the dimethyl acetylene dicarboxylate (0.1 mL) and nitrobenzene (1 mL) along with a boiling stick. The color of the mixed solution was purple. The solution was then heated to reflux until it turned into a tan color. After the color change has occurred, ethanol (3 mL) was stirred into the small reaction tube. After that, the small reaction tube was placed in an ice bath until the solid was formed at the bottom of the tube. Then, the solution with the precipitate was filtered through vacuum filtration and washed with ethanol. The precipitate then was dried and weighed. The final product was dimethyl tertraphenylpthalate (0.086 g, 0.172mmol, 61.42%).
yield of the pure product was determined to be 95.42%. PURPOSE The purpose of this lab was to perform an electro-philic aromatic substitution and determine the identity of the major product. TLC was used to detect unreacted starting material or isomeric products present in the reaction mixture. RESULTS The theoretical yield of the m-nitrobenzoate was determined to be 4.59 grams.
The percent yield of products that was calculated for this reaction was about 81.2%, fairly less pure than the previous product but still decently pure. A carbon NMR and H NMR were produced and used to identify the inequivalent carbons and hydrogens of the product. There were 9 constitutionally inequivalent carbons and potentially 4,5, or 6 constitutionally inequivalent hydrogens. On the H NMR there are 5 peaks, but at a closer inspection of the product, it seems there is only 4 constitutionally inequivalent hydrogens because of the symmetry held by the product and of this H’s. However, expansion of the peaks around the aromatic region on the NMR show 3 peaks, which was suppose to be only 2 peaks. In between the peaks is a peak from the solvent, xylene, that was used, which may account to for this discrepancy in the NMR. Furthermore, the product may have not been fully dissolved or was contaminated, leading to distortion (a splitting) of the peaks. The 2 peaks further down the spectrum were distinguished from two H’s, HF and HE, based off of shielding affects. The HF was closer to the O, so it experienced more of an up field shift than HE. On the C NMR, there are 9 constitutionally inequivalent carbons. A CNMR Peak Position for Typical Functional Group table was consulted to assign the carbons to their corresponding peaks. The carbonyl carbon, C1, is the farthest up field, while the carbons on the benzene ring are in the 120-140 ppm region. The sp3 hybridized carbon, C2 and C3, are the lowest on the spectrum. This reaction verifies the statement, ”Measurements have shown that while naphthalene and benzene both are considered especially stable due to their aromaticity, benzene is significantly more stable than naphthalene.” As seen in the reaction, the benzene ring is left untouched and only the naphthalene is involved in the reaction with maleic
Wittig reactions allow the generation of an alkene from the reaction between an aldehyde/ketone and a ylide (derived from phosphonium salt).The mechanism for the synthesis of trans-9-(2-phenylethenyl) anthracene first requires the formation of the phosphonium salt by the addition of triphenylphosphine and alkyl halide. The phosphonium halide is produced through the nucleophilic substitution of 1° and 2° alkyl halides and triphenylphosphine (the nucleophile and weak base) 4 An example is benzyltriphenylphosphonium chloride which was used in this experiment. The second step in the formation of the of the Wittig reagent which is primarily called a ylide and derived from a phosphonium halide. In the formation of the ylide, the phosphonium ion in benzyltriphenylphosphonium chloride is deprotonated by the base, sodium hydroxide to produce the ylide as shown in equation 1. The positive charge on the phosphorus atom is a strong EWG (electron-withdrawing group), which will trigger the adjacent carbon as a weak acid 5 Very strong bases are required for deprotonation such as an alkyl lithium however in this experiment 50% sodium hydroxide was used as reiterated. Lastly, the reaction between ylide and aldehyde/ketone produces an alkene.3
Discussion and Conclusions: Interpreting these results have concluded that relative reactivity of these three anilines in order of most reactive to least reactive go; Aniline > Anisole > Acetanilide. Aniline, has an NH2 , the most active substituent , and adds to any ortho/para position available on the ring. This data is confirmed with the product obtained, (2,4,6 tribromoaniline, mp of 108-110 C). As for anisole, it has a strongly activating group attached, OMe an alkoxy group, and it added in two of the three available spots, both ortho. The results conclude: (2,4-Dibromoanisol mp 55-58 C ). Acetanilide has a strong activating group attached, acylamino group, but this group is large and the ortho positions are somewhat hindered so the majority of the product obtained added at the para position, results conclude: (p-bromoacetanilide mp 160-165 C). Since all the substituents attached to the aromatic rings were activators the only products able to be obtained were ortho/para products.
Discussion The reaction of (-)-α-phellandrene, 1, and maleic anhydride, 2, gave a Diels-Alder adduct, 4,7-ethanoisobenzofuran-1,3-dione, 3a,4,7,7a-tetrahydro-5-methyl-8-(1-methylethyl), 3, this reaction gave white crystals in a yield of 2.64 g (37.56%). Both hydrogen and carbon NMR as well as NOESY, COSY and HSQC spectrum were used to prove that 3 had formed. These spectroscopic techniques also aided in the identification of whether the process was attack via the top of bottom face, as well as if this reaction was via the endo or exo process. These possible attacks give rise to four possible products, however, in reality due to steric interactions and electronics only one product is formed.
This week’s lab was the third and final step in a multi-step synthesis reaction. The starting material of this week was benzil and 1,3- diphenylacetone was added along with a strong base, KOH, to form the product tetraphenylcyclopentadienone. The product was confirmed to be tetraphenylcyclopentadienone based of the color of the product, the IR spectrum, and the mechanism of the reaction. The product of the reaction was a dark purple/black color, which corresponds to literature colors of tetraphenylcyclopentadienone. The tetraphenylcyclopentadienone product was a deep purple/black because of its absorption of all light wavelengths. The conjugated aromatic rings in the product create a delocalized pi electron system and the electrons are excited
The product was recrystallized to purify it and the unknown filtrate and nucleophile was determined by taking the melting points and performing TLC. Nucleophilic substitution reactions have a nucleophile (electron pair donor) and an sp3 electrophile (electron pair acceptor) with an attached leaving group. This experiment was a Williamson ether synthesis usually SN2, with an alkoxide and an alkyl halide. Conditions are favored with a strong nucleophile, good leaving group, and a polar aprotic solvent.
The purpose of the experiment was to study the kinetics of the hydrolysis of ester, p-nitrophenyl acetate (NPA) that is catalyzed by the buffer imidazole (Im). In terms of kinetics, specifically speaking, the rate of reaction as determined by the concentration, reaction orders, and rate constant with each species in a chemical reaction. By using the concentration of the catalyst and the temperature, the overall reaction rate was determined. The rate constants of K0, Kobs, and Kcat can be derived via the plotting of the absorbtion at 400nm of p-nitrophenol vs. the concentration of the catalyst imidazole. Lastly, the free energy of activation, ΔGǂ, that is necessary to force the reactant’s transformation of the reactants to the transition state structure will be determined by using the equation ΔGǂ = ΔHǂ – TΔSǂ derived from the Eyring plot.
In this experiment, four elimination reactions were compared and contrasted under acidic (H2SO4) and basic (KOC(CO3)3) conditions. The acid-catalyzed dehydration was done on 2-butanol and 1-butanol; a 2ᵒ and 1ᵒ alcohol, respectively. The base-induced dehydrobromination was performed on 2-bromobutane and 1-bromobutane; isomeric halides. The stereochemistry and regiochemistry of the four reactions were analyzed by gas chromatography (GC) to determine product distribution (assuming that the amount of each product in the gas mixture is proportional to the area under its complementary GC peak. The three butene products have been verified that they elute in the following order: 1-butene, trans-2-butene, and cis-2-butene.
of a zwitterion is made possible due to the basic properties of the NH2 group
Predictions may be made about the suitability of possible catalysts by assuming that the mechanism of catalysis consists of two stages, either of which can be first:
The solution for the resistance to oxidation of p-toluic acid was solved by the discovery of bromide-controlled air oxidation in 1955 that was led to the implementation of AMOCO process [28-31]. In AMOCO process, the oxidation of para-xylene was conducted using a combination of three ions as a homogeneous catalyst which is cobalt, manganese and bromide ions. Acetic acid and oxygen/air were used as solvent and oxidant, respectively [32]. The common bromide ion sources are hydrobromic acid (HBr) and sodium bromide (NaBr). The oxidation operated at 175-225°C and 15-30 bar of oxygen. The terephthalic acid formed mostly in the form of solid due to the low solubility of terephthalic acid in the acetic acid. AMOCO process successfully gives a promising reaction yield, since more than 98% of para-xylene reacted, while terephthalic acid selectivity yield was about 95% in the reaction time of 8-24 hours (Scheme 3).
Because of its diverse properties, both chemical and physical, zinc oxide is widely used in numerous areas. Among the various potential applications of ZnO that are applicable in today’s industries ranging from rubber to pharmaceutical, from textiles to agriculture, and from electronics and electrotechnology industries. The use of zinc oxide is not limited to only a certain region or area, but rather it is use
Coordination compounds are those which are electrically neutral and contain complex ions. Complex ions are those compounds in which central metal atom is bonded to ligand by coordinate covalent bond. The complex can be charged so coordination compound is balanced by counter ion.