Computer chips have opened the doors for so many technologies to succeed and automated many of the trivial functions of work that once took hundreds of hours to complete The discovery, research and evolution of semiconductors has made this technology possible. Semiconductors are one of the essential building blocks for computer chips and without them modern computing would not be possible. “Simply defined, semiconductors are generally certain elements (such as silicon) and chemical compounds (such as lead sulfide) that allow, but still resist the flow of electricity” [1]. Semiconductor properties allow the conductivity of the said material to be controlled with electrical impulses. In recent decades great strides have been made concerning materials …show more content…
They are mediocre conductors but the important part is that that conductivity can be controlled making them ideal for computer chips and computer systems [4]. Their properties allow for the miniaturization of computer parts, diodes, and transistors. Silicon and germanium are two very popular elements to be used as semiconductors along with various compounds that posses the unique property desired in semiconductors. The properties of semiconductors were first observed by Michael Faraday in 1833 and Karl Braun discovered and documented the first semiconductor diode effect in 1874. As the power of computers and computers chips grew so did the amount of heat produced. Overheating can severely damage the physical properties of the chip and create problems such as melting materials, charred plastics, warped and broken semiconductor dies, and other types of irreversible damage [5]. The physical properties that the competing pieces were made of became a bottleneck for the magnitudes of computing power that could be created. In response to this problem researchers have looked for semiconductor materials that can cope with the intense heat generated better. Solutions vary from altering the structure of the material to using a different metal alloy altogether. Materials that prevent overheating allow the size of computer systems to be …show more content…
Now, scientists must find new compounds for semiconductors or new methods for their construction and the overall structure of the material. Software engineers have made exciting discoveries in the past decade such as chip stacking, devices operating in the tens of nanometers, and transparent materials for touchscreens and interfaces [2]. Despite these great new ideas they have been limited by poor thermal management. The shrinking size and exponentially growing electrical requirements. The power required for high performance computing applications on some modern processor modules can reach 200–250 W or more which means upt 1 kW of heat per hour or 1895.63 degrees celsius [8]. “Hot spots” on devices are often the determining factor when a device is being judged for reliability as theses “hot spots” can be five or even ten times as hot as the device average [2]. Most of often the these high heat loads have been handled by materials that have a high thermal conductivity so as to spread out the heat from “hot spots”. The more area the heat is spread over the better it can be handled by the device. Besides the downsizing of electronic devices which can condense heat spots, the increase in devices interconnect layers, which serve “as as the streets and highways of the integrated circuit (IC),
The first term that I noted during the movie was Conductive Polymers. Conductive polymers are almost always organic meaning a large class of chemical compounds whose molecules contain carbon. These polymers have extended delocalized bonds which are bonds found in a molecule that do not belong to a single atom or covalent bond. They are conjugated systems of double bonds and in a aromatic systems. The conjugated systems are atoms covalently bonded with alternating single and double bonds. When the electrons are removed or added into the valence bands the electrical conductivity increases. The conductive polymer has a low conductivity until the electron is removed from the valence band called (p-doping) or (n-doping) until it becomes more conductive. The movement of the charges is what is responsible for electrical conductivity. These polymers are plastic which are organic polymers and with mechanical properties such as flexibility and elasticity.
Dielectric study of solid polymer electrolytes is an important technique for understanding the various relaxation processes, which are associated with the ion motion. The frequency dependent dielectric constant at room temperature for the PEO with different wt% of KCl is shown in Figure 3.14(a). It is evident from the figure that the dielectric constants are significantly high in the low frequency region due to electrode polarization and space charge effects and it obeys the non-Debye type behaviour [53, 54].
Ewald Georg von Kleist is a German scientist who created the capacitor in November of 1745. Regrettably, Kleist did not have the proper paper work to claim in the records that the design of the capacitor was his idea. Many months later, a Dutch professor named Pieter van Musschenbroek created the Leyden jar, the world’s first capacitor (on record). It was a simple jar that was half filled with water and metal above it. A metal wire was connected to it and that wire released charges. Benjamin Franklin created his own version of the Leyden jar, the flat capacitor. This was the same experiment for the more part, but it had a flat piece of glass inside of the jar. Michael Faraday was the first scientist to apply this concept to transport electric power over a large distance. Faraday created the unit of measurement for a capacitor, called Farad.
Microelectromechanical Systems (MEMS) are systems that are designed on a micro metre scale and have become more popular as the demand for devices to get smaller has increased. The main uses of these systems are for sensors, such as accelerometers and gyroscopes and other such devices like microscopy and inkjet nozzles for example. There are many materials that can be used for MEMS as the cost of the material is almost eradicated due to the micro size of the systems being produced. This brings materials such as gold, platinum and diamond can be used, as these materials have some properties which are very desirable for a MEM systems. The most common material that is currently used in MEMS is silicon and silicon based compounds as they possess many good properties for MEMS production. Most of the materials chosen for MEMS are semiconductor materials Figure 1 shows the properties of commonly used materials.
Every chemical element or compound have specific properties that make them different than the other. However, these properties help us to understand every element or compound in which they can be used and how we can deal with them. These properties can be chemical properties which are defined as "that property must lead to a change in the substances ' chemical structure", such as heat of combustion and flammability ("Physical and Chemical…"). Also, these properties can be physical properties which are defined as the properties "that can be measured or observed without changing the chemical nature of the substance", such as mass, volume, boiling and freezing points ("Physical and Chemical…"). These two properties are related to each other. For
For over thirty years, since the beginning of the computing age, the Gordon Moore's equation for the number of chip transistors doubling every eighteen months has been true (Leyden). However, this equation by its very nature cannot continue on infinitely. Although the size of the transistor has drastically decreased in the past fifty years, it cannot get too much smaller, therefore a computer cannot get much faster. The limits of transistor are becoming more and more apparent within the processor speed of Intel and AMD silicon chips (Moore's Law). One reason that chip speeds now are slower than possible is because of the internal-clock of the computer. The clock organizes all of the operation processing and the memory speeds so the information ends at the same time or the processor completes its task uniformly. The faster a chip can go (Mhz) requires that this clock tick ever and ever faster. With a 1.0 Ghz chip, the clock ticks a billion times a second (Ball). This becomes wasted energy and the internal clock limits the processor. These two problems in modern computing will lead to the eventual disproving of Moore's Law. But are there any new areas of chip design engineering beside the normal silicon chip. In fact, two such designs that could revolutionize the computer industry are multi-threading (Copeland) and asynchronous chip design (Old Tricks). The modern silicon processor cannot keep up with the demands that are placed on it today. With the limit of transistor size approaching as well the clock speed bottleneck increasing, these two new chip designs could completely scrap the old computer industry and recreate it completely new.
The molar specific heats of most solids at room temperature and above are nearly constant, in agreement with the Law of Dulong and Petit. At lower temperatures the specific heats drop as quantum processes become significant. The Einstein-Debye model of specific heat describes the low temperature behavior.
There is big deal of interest in silicon carbide (SiC) as an electronic material for high-voltage, high-power and high temperature applications. In this thesis, characteristics of Double gate vertical metal semiconductor field effect transistors (MESFET) fabricated on N/N+ 3C-SiC grown on N+ Si substrate are reported. The most intriguing electronic property of silicon carbide is that it is the only semiconductor material other than silicon that can have electronically passivated surface to industrial standards. The surface passivation is the main reason for the dominance of silicon but, in addition to that, silicon carbide has superior bulk properties. This combination of factors raises the question whether silicon carbide can play a role in main stream electronics (integrated-circuit based complex systems). After analysis of both technical and commercial factors and challenges leads to a conclusion that developing a silicon-carbide film on silicon wafers is the most promising way for silicon carbide enter the mainstream electronics. SiC MESFET shows great promise in high power/temperature operations when compared to Si counter parts. The simulations were performed on ATLAS (SILVACO) software, and results are presented.
When we place two objects with different temperatures in contact with each other, the heat from the hotter object will immediately and automatically flow to the colder object. This is known as conduction. Some objects make excellent conductors of heat while others make poor conductors of heat or excellent insulators. Silver, copper, and gold make excellent conductors of heat. Foams and plastics make good insulators of heat but make poor conductors. Last night for dinner, I made myself a grilled cheese sandwich and a bowl of tomato soup. I heated the soup faster than I cooked the sandwich so I poured the hot soup into a bowl and finished cooking the sandwich. Once I was done cooking, I gabbed the soup bowl and burned my hand. The heat from the soup made the bowl hot. This is an example of conduction.
In the past few decades, one field of engineering in particular has stood out in terms of development and commercialisation; and that is electronics and computation. In 1965, when Moore’s Law was first established (Gordon E. Moore, 1965: "Cramming more components onto integrated circuits"), it was stated that the number of transistors (an electronic component according to which the processing and memory capabilities of a microchip is measured) would double every 2 years. This prediction held true even when man ushered in the new millennium. We have gone from computers that could perform one calculation in one second to a super-computer (the one at Oak Ridge National Lab) that can perform 1 quadrillion (1015) mathematical calculations per second. Thus, it is only obvious that this field would also have s...
Humans these days take electricity for granted. We don’t truly understand what life was like without it. Most young adults will tell you their life does not depend on electricity, but they aren’t fooling anyone. They all know that their life depends on electricity; whether it’s television, their phone, Google, or the lights in their house. We need to stop taking those things for granted and give credit where credit is due. That is why I chose to write about the scientists who contributed to the discovery of electricity, which then helped modern scientists fuel the electricity phenomenons we now have today.
computer now has transistors the size of eleven atoms. Because of such minuscule scales that
Prior to the revolution in technology that was microprocessors, making a computer was a large task for any manufacturer. Computers used to be built solely on discrete, or individual, transistors soldered together. Microprocessors act as the brain of a computer, doing all mathematics. Depending on how powerful the machine was intended to be, this could take weeks or even months to produce with individual components. This laborious task put the cost of a computer beyond the reach of any regular person. Computers before lithographic technology were massive and were mostly used in lab scenarios (Brain 1).
Throughout the past century, investigations of quantum and particle physics phenomena have proven to show the most significant concepts and ideas in the physical and sub-atomic world. However, the discoveries yet to be made are endless. One of the most fascinating concepts in the sub-atomic universe is the idea of spintronics. Spintronics is the quantum study of the independent angular momentum (not to be confused with the orbital angular momentum of the electron) of a particle, typically that of an electron (Introduction). An electron is a fundamental particle, with a negative charge, and is independently studied in the process of spintronic devices. The spin angular momentum of electrons is ±½ћ. Devices that use the properties
A computer is a device which is used for several applications; business, gaming, or school. It’s important for people to know how computers work because in this day and age, operating a computer is an everyday task. This complex electrical device utilizes several parts inside of it to keep itself cool, conduct the proper tasks, and maintain stability. These devices can be found several places whether it be on the job, in one’s room, or on a school campus. Computers are essential for everyday use in order to complete what is required. What each component is and its function will be described.