Discussion Hypothesis 1 Overall, as the concentration of the substrate increases, the enzyme activity increases up to a 70% of solution, where the enzyme activity starts to level off. The curve is polynomial because of the fact that the enzyme activity exponentially increases as the concentration of substrate increase; additional evidence for this is the fact that the gradient graph is constantly changing. The polynomial curve is shown because until 70% (the saturation point); this is because there are more casein substrate molecules that can successfully collide with the renin enzyme molecule, therefore increasing the rate of reaction. However, once it reaches 70% of concentration, the enzyme becomes saturated, meaning that there are no active sites for the substrates to fill, which leaves casein (milk) molecules suspended in the curd; the saturation point for this curve was located at 6.5x 10-3 seconds. This was clearly evident in some of the visual results of the practical, where we could see that there was still milk that could be decanted when the curd was poured out. Therefore, even if we added more casein substrate, the curve enzyme activity would still flatten, indicating again that all or most of the active sites of the renin enzyme were full. Moreover, the class average curve shows a similar trend, as the curve flattens, at 70% but with an enzyme activity of 5.3 x10-3 seconds. This indicates that even though the saturation point is the same it was considerably lower than our results, which could indicate sources of systematic error in the design of the practical. The control for both curves was the beaker with 0% concentration of substrate, which produced no enzyme activity, as there were no substrate molecules for... ... middle of paper ... ...rting the stopwatch itself. Alternatively, we could also exclude milliseconds when calculating out results. This would therefore eradicate any reaction times and as a result, make the data more reliable and accurate. To conclude, an important random error was the idea that the renin enzyme solution was inconsistently stirred with the casein: as if we were almost encouraging the curd to form. This meant that because each of the renin and casein molecules had more kinetic energy, it was more likely that they would collide. Consequently, the rate of reaction would minutely increase. Even though we tried to consistently stir the mixture, it was hard to keep this continuous for the duration for both practicals. Therefore, to keep the stirring more constant, we could use a magnetic stirrer, in order to make the kinetic energy used to stir the mixtures a control factor.
The results of this experiment showed a specific pattern. As the temperature increased, the absorbance recorded by the spectrophotometer increased indicating that the activity of peroxidase enzyme has increased.At 4C the absorbance was low indicating a low peroxidase activity or reaction rate. At 23C the absorbance increased indicating an increase in peroxidase activity. At 32C the absorbance reached its maximum indicating that peroxidase activity reached its highest value and so 32 C could be considered as the optimum temperature of peroxidase enzyme. Yet as the temperature increased up to 60C, the absorbance decreased greatly indicating that peroxidase activity has decreased. This happened because at low temperature such as 4 C the kinetic energy of both enzyme and substrate molecules was low so they moved very slowly, collided less frequently and formed less enzyme-substrate complexes and so little or no products. Yet, at 23 C, as the temperature increased, enzyme and substrate molecules
middle of paper ... ... different from what it should be. To solve this problem a thermostatic water bath could be used as stated above. * If the stop watch was stopped to early or late, again the overall reading would not be as accurate as it could have been.
This evidence alone suggests that higher increases in substrate concentration causes smaller and smaller increases in enzyme activity. As substrate concentration increases further, some substrate molecules may have to wait for an active site to become empty as they are already occupied with a substrate molecule. So, the rate of the reaction starts to level off resulting in a plateau in the graphs. This means that the reaction is already working at its maximum rate, and will continue working at that rate until all substrates are broken down. The only way the reaction rate would increase, is if more enzyme was added to the solution. This confirms that increases in substrate concentration above the optimum does not lead to greater enzyme activity. Therefore, the rate of reaction is in proportion to the substrate
I have a prediction for the investigation concerning the concentration of Rennin, another reason I chose this factor. Prediction I predict that as the concentration of rennin increases the rate of reaction will increase. I believe this to be true because if there are an increased number of enzymes, more milk particles will be broken up at any one time into the substance, which coagulates the milk,
The Effect of Temperature on the Activity of Rennin in Milk Aim: To find out what effect different temperatures have on the enzyme, rennin, in milk. Introduction An enzyme is a biological catalyst. It speeds up a reaction by lowering the activation energy required to start the reaction. It speeds up a reaction, but remains unchanged unless certain limiting factors are introduced.
The shape of the molecules is changing and so the enzyme molecules can no longer fit into the gaps in the substrate that they need to and therefore the enzymes have de – natured and can no longer function as they are supposed to and cannot do their job correctly. Changing the temperature: Five different temperatures could be investigated. Water baths were used to maintain a constant temperature. Water baths were set up at 40 degrees, 60 degrees and 80 degrees (Celsius). Room temperature investigations were also carried out (20 degrees).
The purpose of this experiment was to discover the specificity of the enzyme lactase to a spec...
or it may be optimum it depends on what is the best pH that the enzyme
Purpose: The purpose of this lab is to explore the different factors which effect enzyme activity and the rates of reaction, such as particle size and temperature.
In this investigation, the concentration of enzyme will be inversely proportional to the time taken for starch to be digested, until at a certain point where it will level out. It will level out because, all the substrates would have been used up, therefore there will be no more substrates for the enzymes to work on. In effect, the concentration of the substrate will act as a limiting factor. However, enzyme concentration will be directly proportional to the rate of reaction.
According to the graph on amylase activity at various enzyme concentration (graph 1), the increase of enzyme dilution results in a slower decrease of amylose percentage. Looking at the graph, the amylose percentage decreases at a fast rate with the undiluted enzyme. However, the enzyme dilution with a concentration of 1:3 decreased at a slow rate over time. Additionally, the higher the enzyme dilution, the higher the amylose percentage. For example, in the graph it can be seen that the enzyme dilution with a 1:9 concentration increased over time. However, there is a drastic increase after four minutes, but this is most likely a result of the error that was encountered during the experiment. The undiluted enzyme and the enzyme dilution had a low amylose percentage because there was high enzyme activity. Also, there was an increase in amylose percentage with the enzyme dilution with a 1: 9 concentrations because there was low enzyme activity.
Alkaline Phosphatase (APase) is an important enzyme in pre-diagnostic treatments making it an intensely studied enzyme. In order to fully understand the biochemical properties of enzymes, a kinetic explanation is essential. The kinetic assessment allows for a mechanism on how the enzyme functions. The experiment performed outlines the kinetic assessment for the purification of APase, which was purified in latter experiments through the lysis of E.coli’s bacterial cell wall. This kinetic experiment exploits the catalytic process of APase; APase catalyzes a hydrolysis reaction to produce an inorganic phosphate and alcohol via an intermediate complex.1 Using the Michaelis-Menton model for kinetic characteristics, the kinetic values of APase were found by evaluating the enzymatic rate using a paranitrophenyl phosphate (PNPP) substrate. This model uses an equation to describe enzymatic rates, by relating the
The three-dimensional contour limits the number of substrates that can possibly react to only those substrates that can specifically fit the enzyme surface. Enzymes have an active site, which is the specific indent caused by the amino acid on the surface that fold inwards. The active site only allows a substrate of the exact unique shape to fit; this is where the substance combines to form an enzyme- substrate complex. Forming an enzyme-substrate complex makes it possible for substrate molecules to combine to form a product. In this experiment, the product is maltose.
In this lab, it was determined how the rate of an enzyme-catalyzed reaction is affected by physical factors such as enzyme concentration, temperature, and substrate concentration affect. The question of what factors influence enzyme activity can be answered by the results of peroxidase activity and its relation to temperature and whether or not hydroxylamine causes a reaction change with enzyme activity. An enzyme is a protein produced by a living organism that serves as a biological catalyst. A catalyst is a substance that speeds up the rate of a chemical reaction and does so by lowering the activation energy of a reaction. With that energy reactants are brought together so that products can be formed.
From looking at the results I can conclude that when the pH was 3 and 5. No oxygen was produced, therefore no reactions were taking place. This was because the pH had a high hydrogen ion content, which caused the breaking of the ionic bonds that hold the tertiary structure of the enzyme in place of the syringe. The enzyme lost its functional shape.