Gene expression is the ability of a gene to produce a biologically active protein. This process is regulated by the cells of an organism, it is very important to the survival of organisms at all levels. This is much more complex in eukaryotes than in prokaryotes. A major difference is the presence in eukaryotes of a nuclear membrane, which prevents the simultaneous transcription and translation that occurs in prokaryotes. Initiation of protein transcription is started by RNA polymerase. The activity of RNA polymerase is regulated by interaction with regulatory proteins; these proteins can act both positively, as activators, and negatively as repressors. An example of gene regulation in cells is the activity of the trp operon. The trp operon encodes the genes for the synthesis of tryptophan. This type of gene, like the lac operon, is regulated by a repressor that binds to the operator sequences. The activity of the trp repressor is enhanced when it binds tryptophan; in this capacity, tryptophan is known as a corepressor. Since the activity of the trp repressor is enhanced in the presence of tryptophan, the rate of expression of the trp operon is graded in response to the level of tryptophan in the cell. Another example of gene regulation in cells is gene amplification. This is a Technique by which selected DNA from a single cell can be duplicated indefinitely until there is a sufficient amount to analyse by conventional genetic techniques.
The expression of genes is very com...
There are many different cells that do many different things. But all of these cells fall into two categories: prokaryotic and eukaryotic cells. Eukaryotic cells contain a nucleus and are larger in size than prokaryotic cells. Prokaryotic cells do not contain a nucleus, are smaller and simpler than eukaryotic cells. Two of their similarities are they both have DNA as their genetic material and are covered by a cell membrane. Two main differences between these two cells are age and structure. It is believed that prokaryotic cells were the first forms on earth. They are considered primitive and originated approximately 3.5 billion years ago. Eukaryotic cells have only been around for about a billion years. There is strong evidence that suggests eukaryotic cells may be evolved from groups of prokaryotic cells that became interdependent on each other (Phenotypic analysis. (n.d.).
The expression of lac operon in each tube equals the amount of beta-galactosidase produced. Therefore, by looking at the amount of beta-galactosidase under different conditions collectively is a good way to understand the function of inducers and repressors in supervising the expression of lac operon and the control of gene expression generally.
The I gene makes the lac repressor protein. The I gene constitutively transcribes mRNA for the repressor protein. The repressor is a regulator protein. It can bind to either lactose or the operator DNA. The binding of a repressor protein to either DNA or lactose is reversible, so the repressor is bound most often to whichever of the two it finds in the highest concentration. The lac repressor protein is highly attracted to the operator sequence of the lac promoter. When it is bound, transcription does not occur. If lactose levels rise to high concentrations, the lactose molecules will quickly bind to a lactose molecule rather than the one operator. The operator would no longer be repressed and transcription will proceed.
A gene is a sequence of DNA that is used by cells to create protein. It has all of the information needed to make a protein. It knows when to make these protein and where to begin and end. The functions of a cell are then carried out by the proteins.
There are two main types of cells in the world. The simplest cells such as bacteria are known as Prokaryotic cells, and human cells are known as Eukaryotic cells. The main difference between each of these cells is that a eukaryotic cell has a nucleus and a membrane bound section in which the cell holds the main DNA which are building blocks of life.
Transcription factors are proteins that help turn specific genes "on" or "off" by binding to nearby DNA.
There are 4 main mechanisms of modification and regulation of gene expression; DNA methylation, Chromatin Remodeling (architecture), Histone Modification and RNAi (interference/interactions)
... over normal proliferating cells (Figure 1) It is important to target events taking place at the same time in the cell cycle in order to boost effectiveness of the arrest and the results. In addition, it is important to characterize tumors precisely in order to clarify where the deficiencies on the cell cycle control are accrued and which of the phases have to be targeted for successful therapy. Furthermore, in the future, identification of new tumor specific isoenzymes will be necessary to characterize the cell cycle accurately and comprehend the differences between normal cells and cancer cells for the design of novel anticancer therapies (Diaz-Moralli, et al. 2013).
The cell cycle is the process by which cells progress and divide. In normal cells, the cell cycle is controlled by a complex series of signaling pathways by which a cell grows, replicates it’s DNA and divides, these are called proto-oncogenes. A proto-oncogene is a normal gene that could become an oncogene due to mutations. This process has mechanisms to ensure that errors are corrected, if they are not, the cells commit suicide (apoptosis). This process is tightly regulated by the genes within a cell’s nucleus. In cancer, as a result of genetic mutations, this process malfunctions, resulting in uncontrolled cell proliferation. Mutations in proto-oncogene or in a tumour suppressor gene allow a cancerous cell to grow and divide without the normal control imposed by the cell cycle. A change in the DNA sequence of the proto-oncogene gives rise to an oncogene, which
There are various techniques present for the isolation of a gene. These techniques are used to genetically engineer the organism. First step involves the selection and then isolation of the gene of interest which needs to be genetically engineered in an organism. It is known that, most of the genes are transferred into the plant organism to provide herbicide and insects tolerance. In case of animals the genes are usually of growth hormones.
Citation: Philips, T. (2008) Regulation of Transcription and gene expression in Eukaryotes. Nature Education 1(1)
Gene regulation is the process of turning on and off the genes in our cells as they are required. This is needed as every cell in our bodies has a complete set of the genome, and the difference between cells is what genes are being expressed and not expressed within them. The differentiation between cells is due to different regulatory elements. (Yoon, Wan Hee) This differentiation is due to gene regulation which occurs at the level of transcription in the cells. Operons promoters and repressors are all strong...
Auxin influences cell growth rate and alters gene expression by combining with a receptors that targets transcriptional repressors of auxin-response genes that will that either cause or inhibit plant growth. Auxins repress genes or the opposite, to allow other genes to stimulate the plant to grow. The role of this hormone is to change gene expression in a plant so that it can either grow or stop growing
What is the cell cycle? It’s the way we reproduce. A series of events lead up from the beginning that which gives them life to the splitting of cells, The separate steps make up this very important process. Without the division of cells, we simply would not be here today.
Ciftci and Trovitch in 2000 described how a mutation in just one gene will cause irregular cell behaviour thus leading to a dysfunctional protein (Ciftci and Trovitch 2000). It is the purpose of genetic medicine to rectify such genetic disorders by delivering the correct gene version (Ciftci and Trovitch 2000) such as gene therapy or deliver optimized therapeutic care to the patient (Crommelin et al. 2011) as in personalized medicine.