Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Essay on protein synthesis
Essay on protein synthesis
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Protein Synthesis
Protein synthesis is one of the most fundamental biological processes. To start off, a protein is made in a ribosome. There are many cellular mechanisms involved with protein synthesis. Before the process of protein synthesis can be described, a person must know what proteins are made out of. There are four basic levels of protein organization. The first is primary structure, followed by secondary structure, then tertiary structure, and the last level is quaternary structure. Once someone understands the makeup of a protein, they can then begin to learn how elements can combine and go from genes to protein. There are two main processes that occur during protein synthesis, or peptide formation. One is transcription and the other is translation. Although these biological processes slightly differ for eukaryotes and prokaryotes, they are the basic mechanisms for which proteins are formed in all living organisms.
There are four main levels of a protein, which make up its native conformation. The first level, primary structure, is just the basic order of all the amino acids. The amino acids are held together by strong peptide bonds. The next level of protein organization is the secondary structure. This is where the primary structure is repeated folded so that it takes up less space. There are two types of folding, the first of which is beta-pleated sheets, where the primary structure would resemble continuous spikes forming a horizontal strip. The seco...
The shape of the protein chains that produce the building blocks and other structures used in life is mostly determined by weak chemical bonds that are easily broken and remade. These chains can shorten, lengthen, and change shape in response to the input or withdrawal of energy. The changes in the chains alter the shape of the protein and can also alter its function or cause it to become either active or inactive. The ATP molecule can bond to one part of a... ... middle of paper ... ...
"The Species of the Secondary Protein Structure. Virtual Chembook - Elmhurst College. Retrieved July 25, 2008, from http://www.cd http://www.elmhurst.edu/chm/vchembook/566secprotein.html Silk Road Foundation. n.d. - n.d. - n.d.
The primary structure is the sequence of amino acids that make up a polypeptide chain. 20 different amino acids are found in proteins. The exact order of the amino acids in a specific protein is the primary sequence for that protein. [IMAGE] [IMAGE]Protein secondary structure refers to regular, repeated patterns of folding of the protein backbone. The two most common folding patterns are the alpha helix and the beta sheet.
Abstract: Enzymes are catalysts therefore we can state that they work to start a reaction or speed it up. The chemical transformed due to the enzyme (catalase) is known as the substrate. In this lab the chemical used was hydrogen peroxide because it can be broken down by catalase. The substrate in this lab would be hydrogen peroxide and the enzymes used will be catalase which is found in both potatoes and liver. This substrate will fill the active sites on the enzyme and the reaction will vary based on the concentration of both and the different factors in the experiment. Students placed either liver or potatoes in test tubes with the substrate and observed them at different temperatures as well as with different concentrations of the substrate. Upon reviewing observations, it can be concluded that liver contains the greater amount of catalase as its rates of reaction were greater than that of the potato.
Macromolecules are define as large molecules of structures found in living organisms. There are four types of macromolecules, which are proteins, carbohydrate, nucleic acid, and lipids also known as fats. Carbohydrates, proteins, and nucleic acids are made of monomers, which are structural units that eventually attached together to form polymers (Dooley 20). For instance, proteins are made of amino acids, which are monomers. In addition, it has a complex structure, which consist of four different levels, primary, secondary, tertiary, and quaternary. The first structure of protein is the primary structure, which is the sequence of amino acid, while in the secondary structure alpha and beta helices are formed. The structure, in which a protein becomes active, is in the tertiary structure, which is where polypeptide subunits fold. Meanwhile, only certain proteins have the quaternary structure, which is when, more than one polypeptide folds. Proteins are prominent macromolecules mainly because of their numerous functions. For instance, proteins are known for increasing the rate of reactions due to that enzymes are a type of protein. In addition, they are a form of defense mechanism such as they attack pathogens, which cause diseases. In other words, scientists study and gain more insight on certain illness and how to prevent them by using proteins. For example, in a recent study,
Protein structure is broken down into four levels. Primary structure refers to the "linear" sequence of amino acids. Proteins are large polypeptides of defined amino acid sequence (diagram 2). The sequence of amino acids in each protein is determined by the gene that encodes
Sequence and structural proteomics involve the large scale analysis of protein structure. Comparison among the sequence and structure of the protein enable the identification on the function of newly discovered genes (Proteoconsult, n.d.). It consists of two parallel goals which one of the goals is to determine three-dimensional structures of proteins. Determine the structure of the protein help to modeled many other structures by using computational techniques (Christendat et al., 2000). This approach is useful in phylogenetic distribution of folds and structural features of proteins (Christendat et al., 2000). Nuclear magnetic resonance (NMR) spectroscopy is one of the techniques that provide experimental data for those initiatives. It is best applied to proteins which are smaller than 250 amino acids (Yee et al., 2001). Although it is limited by size constraints and also lengthy data collection and analysis time, it is still recommended as it can deliver strong results. There are two types of NMR which are one-dimensional NMR and two-dimensional NMR. One-dimensional NMR provides enough information for assessing the folding properties of proteins (Rehm, Huber & Holak, 2002). It also helps to identify a mixture of folded and unfolded protein by observing both signal dispersion and prominent peak. Observation in one-dimensional spectrum also obtains information on molecular weight and aggregation of molecule under investigation. In spite of this, two-dimensional NMR are used for screening that reveal structural include binding, properties of proteins. It also provides important information for optimizing conditions for protein constructs that are amenable to structural studies (Rehm et al., 2002). NMR is a powerful tool which it w...
As previously mentioned, enzyme catalyzed reactions are a large contributing factor to many biological systems. In regards to metabolic pathways, ATP Synthase is a necessary enzyme that uses a concentration gradient to attach a phosphate group to an ADP molecule. This process is called phosphorylation. The bond that is created between the ADP and the phosphate group is formed by dehydration synthesis. This enzyme appears at the end of the electron transport chain in cellular respiration and at the end of the light dependent reactions in photosynthesis. Regardless of where the enzyme is found, the purpose remains the same; create useable energy in the form of ATP. In cellular respiration, the ATP can be used for several different objectives.
Antimicrobial drugs that block protein synthesis react with ribosomal-mRNA complexes. These drugs are safe only because bacterial ribosomes are different in size and structure compared to human ribosomes, however, they can damage human mitochondria since they can contain ribosomes like bacterial ribosomes.
thousands of different ways to form thousands of different proteins. each with a unique function in the body. Both the amino acids manufactured in the liver and those derived from the breakdown of the The proteins we eat are absorbed into the blood stream and taken up by the cells and tissues to build new proteins as needed.... ... middle of paper ... ...denatured by boiling, their chains are shortened to form gelatine.
1.d. The Nuclear Pore, Ribosomes and the Golgi body work together to make proteins. It all starts at the DNA, this is found inside the nucleus which holds all the important
In the hierarchial organisation of proteins, domains are found at the highest level of tertiary structure. Since the term was first used by Wetlaufer (1973) a number of definitions exist reflecting author bias, however all of the definitions agree that domains are independently folding compact units. Domains are frequently coded by exons and therefore have specific functionality. Among the many descriptions of protein domains the two most striking and simple are " Protein evolutionary units" and "Basic currency of Proteins".
What is protein and how is it made you ask. Well I will tell you first off i'm going to talk to you about DNA and life. Scientists thought that DNA was made up of four nucleotides, so the DNA was exactly the same(Nowicki, 2015). DNA contains the instructions on how to make all of our protein. Central dogma explains the patterns on how DNA goes to RNA to make protein. Central dogma goes from DNA to making new DNA. From DNA to make new RNA from RNA to make new proteins.
Proteins are considered to be the most versatile macromolecules in a living system. This is because they serve crucial functions in all biological processes. Proteins are linear polymers, and they are made up of monomer units that are called amino acids. The sequence of the amino acids linked together is referred to as the primary structure. A protein will spontaneously fold up into a 3D shape caused by the hydrogen bonding of amino acids near each other. This 3D structure is determined by the sequence of the amino acids. The 3D structure is referred to as the secondary structure. There is also a tertiary structure, which is formed by the long-range interactions of the amino acids. Protein function is directly dependent on this 3D structure.
Moderation is vital in all aspects of life and is necessary for overall health, including with one’s food intake. Protein is one of the many important nutrient building blocks that is necessary for proper growth and good health. However, eating excessive amounts of any nutrient or inadequate amounts, can cause various health concerns. Scientists have been able to estimate the amount of nutrients that the body requires. However, the amount of any particular nutrient varies from person to person, depending on your “age, sex, general health status, physical activity level, and use of medications and drugs” (Schiff 2013). It is also important to remember that consuming the required amount of nutrients that meets your dietary guidelines does not