Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Gene therapy pros and cons
Gene therapy benefits research paper
Gene therapy a blessing or a curse
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Position Paper: Gene Therapy in Humans
Advancements in science and medicine are usually accompanied with a myriad of ethical and moral implications. The fairly recent advancement in genetics called gene therapy is no exception to the baggage of polarizing views that come with new technology. Gene therapy is an extremely hot topic in both the science world and everyday life. New technology, discoveries, and breakthroughs are rapidly occurring in the field every day. The topic of gene therapy in humans is one that is highly debated due to the ethical implications connected to the science. Both sides of the debate have various reasons for their position, but the main factors come down to the ethics of changing someone’s genome and the consequences that accompany the altercations. The two types of gene therapy, somatic and germ-line are seen in different lights. There is more debate over germ-line therapy because the alterations have more consequences than somatic gene therapy. There are many moral and ethical decisions that need to be considered before gene therapy can be widely accepted. Do we have the right to change a person’s genetics, especially before they are born? Do we know enough to confidently insert or delete genes without detrimental consequences down the road? If we have the ability to help people who have disabilities or diseases, is it ethical to withhold and not treat the patient? I believe human gene therapy is a good and useful tool for medicine and needs to be developed because it posses the ability to help and cure people from ailments that degrade their quality of life.
One of the biggest concerns involved in gene therapy in humans is the lack of knowledge and the possibility for consequences later on or i...
... middle of paper ...
...ring deadly diseases and preventing abortions. In order for gene therapy to one day become effective much more research needs to be done to discover the consequences of altering specific genes. Also the technology of gene therapy needs to be cost effective so people who need help are able to get help. In the end gene therapy in humans needs to come a long ways before it will be widely accepted but there is great potential in the technology and it needs to be pursued.
Bibliography
Anderson, W. F. (1992). Human Gene Therapy. Science, 256 (5058), 808-813. Retrieved from http://ezproxy.ccu.edu:2190/docview/213544223
Waddington, S.N., Kennea, N.L., Buckley, S.M.K., Gregory, L.G., Themis, M., & Coutelle, C. (2004). Fetal and neonatal gene therapy: benefits and pitfalls. Nature, 11, 92-97. Retrieved from http://www.nature.com/gt/journal/v11/n1s/pdf/3302375a.pdf
First, I must define what types of diseases and disabilities fall under the category of things I believe we should be able to treat with genetic therapies and why. As Goering states, “if a child needs surgery or a painful treatment to survive or to thrive, we allow ourselves room to do what is ‘best for the child’ even if that may involve unavoidable pain that the child is not able to consent to.” If we were to except this as true, then a logical conclusion would be to fix the problem through genetic therapy before a child has to go through any pain. We should save them from these gruesome experiences. Some examples that Goering lists are Tay-Sachs disease, Lesch-Nyan syndrome, and cystic fibrosis (332).
... fight the disease. It is crucial that regulation be a necessary component of gene therapy research and applications. In hopes that the government can regulate and can receive this treatment, not restricting it to people that has serious genetic diseases. Gene therapy will change the field of medicine from what it is today. As scientist discovers more genes and their functions, the potential of this treatment is limitless. Though gene therapy is an auspicious treatment choice for numerous diseases (including inherited disorders, some types of cancer, and certain viral infections), the procedure remains precarious and is still under study to make sure that it will be safe and effective. Thus government regulators and scientist must take a lead role in adopting a practical approach to address these issues and determining the correct procedures for dealing with them.
Just as there are different types of people who look at one glass of water and describe it as half full or half empty, the public has many different views on the future of our society. Gene therapy is also a glass that can be viewed in different angles – different perspectives. Some say it has great potential to shape the ideals of our future, while others believe it signifies intolerance for disabilities, imperfections that supposedly deplete from a person’s interests, opportunities and welfare (quoted by Peter Singer, xviii). This global issue has brought people with different opinions in the open, arguing their views using history, morality and foresight.
Human gene therapy is a method used in the medical field that treats diseases at a molecular level, by solving the source of the problem; our genes. Today, diseases and disorders are commonly treated by solving the symptoms, the surface of the problem. Many disorders and diseases are caused by defective proteins and within those defective proteins are damaged and defective genes. These defective genes can be treated through gene therapy. Gene therapy is not new and has been developed and improved by researchers for the past couple years. Being an experimental technique, gene therapy also has its pros and cons, but so far is showing positive and rising success rates.
Over 40 years ago, two men by the names of James Watson and Francis Crick discovered deoxyribonucleic acid, or DNA. DNA is hereditary material in humans and almost all other organisms (What is DNA?). From this finding, gene therapy evolved. Today, researchers are able to isolate certain specific genes, repair them, and use them to help cure diseases such as cystic fibrosis and hemophilia. However, as great as this sounds, there are numerous ethical and scientific issues that will arise because of religion and safety.
In this paper, I will negatively expose Walter Glannon’s position on the differentially between gene therapy and gene enhancement. His argument fails because gene therapy and genetic enhancement is morally impermissible because its manipulation and destruction of embryos shows disrespect for human life and discrimination against people with disabilities.
Gene therapy is a technique which has developed in the wake of recombinant DNA (rDNA) technology. It is a process which results in the correction of a genetic disorder by the addition of a piece or fragment of DNA into the genetic material of a living, functioning cell. A mere thirty years ago this concept belonged to the realm of the human imagination made manifest in the works of science fiction. Today it belongs to the realm of the human imagination made manifest in the works of science, period. It is mind boggling to try to comprehend the far reaching effects of gene therapy. How is it affecting society? Who will benefit from its use? Should it be used at all? Should research continue? How do we answer all of these questions? The answers are not readily available, nor are they black and white, but an attempt at finding some solutions must be made. Before exploring this line of thought further, a basic understanding of the technical aspects of gene therapy is essential.
In September 14, 1990, an operation, which is called gene therapy, was performed successfully at the National Institutes of Health in the United States. The operation was only a temporary success because many problems have emerged since then. Gene therapy is a remedy that introduces genes to target cells and replaces defective genes in order to cure the diseases which cannot be cured by traditional medicines. Although gene therapy gives someone who is born with a genetic disease or who suffers cancer a permanent chance of being cured, it is high-risk and sometimes unethical because the failure rate is extremely high and issues like how “good” and “bad” uses of gene therapy can be distinguished still haven’t been answered satisfactorily.
One of the most necessary uses of genetic engineering is tackling diseases. As listed above, some of the deadliest diseases in the world that have yet to be conquered could ultimately be wiped out by the use of genetic engineering. Because there are a great deal of genetic mutations people suffer from it is impractical that we will ever be able to get rid of them unless we involve genetic engineering in future generations (pros and cons of genetic eng). The negative aspect to this is the possible chain reaction that can occur from gene alteration. While altering a gene to do one thing, like cure a disease, there is no way of knowing if a different reaction will occur at the cellular or genetic level because of it; causing another problem, possibly worse than the disease they started off with (5 pros and cons of gen. eng.). This technology has such a wide range of unknown, it is simply not safe for society to be condoning to. As well as safety concerns, this can also cause emotional trauma to people putting their hopes into genetic engineering curing their loved ones, when there is a possibility it could result in more damage in the
"The aim is to decrease the fear of a brave new world and to encourage people to be more proactive about their health. It [Gene therapy] will help humans become better physically and even mentally and extend human life. It is the future” (Hulbert). Dr. Hulbert, a genetic engineer, couldn’t be anymore right; more time, money, and research needs to be put into gene therapy and genetic engineering, since it can cure certain illness and diseases that are incurable with modern medicine, has fewer side-effects than conventional drugs or surgery, and allows humans to be stronger physically and mentally at birth. Gene therapy or genetic engineering is the development and application of scientific methods, procedures, and technologies that permit direct manipulation of genetic material in order to alter the hereditary traits of a cell, organism, or population (NIH). It essentially means that we can change DNA to make an organism better. Genetic engineering is used with animals and plants every day; for example with genetic...
Since its inception, gene therapy has captured the attention of the public and ethics disciplines as a therapeutic application of human genetic engineering. The latter, in particular, has lead to concerns about germline modification and questions about the distinction between therapy and enhancement. The development of the gene therapy field and its progress to the clinic has not been without controversy. Although initially considered as a promising approach for treating the genetic of disease, the field has attracted disappointment for failing to fulfil its potential. With the resolution of many of the barriers that restricted the progress of gene therapy and increasing reports of clinical success, it is now generally recognised that earlier expectations may have been premature.
Human Genetic Engineering: Designing the Future As the rate of advancements in technology and science continue to grow, ideas that were once viewed as science fiction are now becoming reality. As we collectively advance as a society, ethical dilemmas arise pertaining to scientific advancement, specifically concerning the controversial topic of genetic engineering in humans.
Bergeson, E. (1997) The Ethics of Gene Therapy [Online] Available at: http://www.ndsu.edu/pubweb/~mcclean/plsc431/students/bergeson.htm [Accessed 14 July 2011]
In an article titled “The Ethical Implications of Gene Therapy” the group of advisers on Ethical Implications of Biotechnology of the European commission states issues and rules that should be abided by, along with beliefs on the direction of biotechnology. At its present stage, biotechnology focuses on serious diseases which are incurable at the moment, however through this research treatment for these diseases could be found. The group of advisers feel that there should be levels at which research should focus on, instead of jumping into it all at once. Basic research should be carried out prior to clinical trials, and then move on to biotechnology. This can be done by supporting research actions, organizing training and exchange programs or any other appropriate means. Gene therapy protocols require that ethical evaluation consists of processes assuring quality, transparency and efficiency without delays of treatment to the patients who need it. This is crucial because an inefficient, poor quality treatment could cost someone their life. The group also feels that gene therapy research should be restricted to serious diseases for which there is not a current treatment. Expanding research to other things could be done if a medical evaluation calls for it. Equal access should be assured to all researchers within the European Union, thus sharing information and helping to improve orphan drugs. This could also save time and money. In order to insure the public of what is going on, conclusions of evaluations should regularly be published to encourage public debate. The public is not usually informed much about genetic therapy and many people have the wrong idea about it. Should reports be published more often, there will be less public confusion and ridicule.
Scientists and the general population favor genetic engineering because of the effects it has for the future generation; the advanced technology has helped our society to freely perform any improvements. Genetic engineering is currently an effective yet dangerous way to make this statement tangible. Though it may sound easy and harmless to change one’s genetic code, the conflicts do not only involve the scientific possibilities but also the human morals and ethics. When the scientists first used mice to practice this experiment, they “improved learning and memory” but showed an “increased sensitivity to pain.” The experiment has proven that while the result are favorable, there is a low percentage of success rate. Therefore, scientists have concluded that the resources they currently own will not allow an approval from the society to continually code new genes. While coding a new set of genes for people may be a benefitting idea, some people oppose this idea.