Ozone Depletion

1222 Words3 Pages

Ozone Depletion

Atmospheric ozone layer depletion is a serious problem currently facing the world. The ozone layer protects humans, animals, and plants from harmful ultraviolet rays. Money and time are being spent on ozone repair, but the problem still exists.

The ozone layer is a region of the stratosphere containing ozone, or O3 gas. The ozone layer is essential to both plant and animal life on earth because it protects the surface from dangerous ultraviolet light.

However, industrial and domestic chemicals that are currently in use have been found to destroy ozone, and the problem has escalated to an ozone layer "hole" above Antarctica. Ozone levels there are 40 percent below normal, and there may be another ozone hole forming above the Arctic region.1

Ozone gas contains an extraneous oxygen atom in each molecule and is highly unstable. This property lets ozone block out ultraviolet rays and makes it an essential part of the eco-system. When harmful ultraviolet-B rays (wavelength 240-320 NM) come through the atmosphere, the O3 molecules absorb the energy and one oxygen atom detaches from the molecule. The stray atom will eventually collide with another O2 molecule and ozone will be reformed. With this process, the level of ozone remains constant, as it has for millions of years.3

Recently, a number of chemicals have been found to aid in the rapid destruction of ozone. Most of these chemicals are compounds called chlorofluorocarbons, or CFC’s. It is difficult to ban them outright because they have hundreds of industrial uses. CFC’s are widely used because they are non-toxic, non-flammable, and inexpensive. Recent environmental legislation on both the state and national levels has banned the use of some CFC’s, but the question of their disposal still remains.4

Chlorofluorocarbons do not destroy ozone directly. Compounds made from CFC’s photo-decay series act as catalysts in the splitting of O3 molecules. When CFC’s reach the stratosphere, they break down when struck by the intense light rays. The molecule splits and a majority of the chlorine then forms hydrogen chloride or chlorine nitrate, which then decay into atomic chlorine or chlorine monoxide.3

These are the substances responsible for the physical destruction of ozone. As they come in contact with an ozone molecule, they cause the third oxygen atom to detach and form an O2...

... middle of paper ...

...cturing technology can be implemented, aerogels will remain experimental.6

There is no obvious solution to the ozone layer problem. It has been estimated that if CFC production ceased today, people living 70 years from now would still have to deal with their effects. Also, conflicts between industrialists and environmentalists in government have prevented sufficient CFC-blocking legislation from being fully effective. If the ozone layer can be repaired, it will take a massive effort by the people and government to make it successful.

References

1 Zurer, Pamela. "Record Low Ozone Levels Observed over Arctic." Chemical and Engineering News 10 Apr. 1995: 8-9.

2 Davies, Owen. "Air Repair." Omni June 1993: 62+.

3 "Ozone Depletion FAQ." Online. Internet. Available http://www.cis.ohio-state.edu/hypertext/ faq/usenet/ozone-depletion/top.html.

4 "Ozone Layer." Microsoft Encarta 96 Encyclopedia. CD-ROM. Microsoft. 1996

5 Zurer, Pamela. "EPA Lists Acceptable Substitutes for CFCs." Chemical and Engineering News 3 May. 1993: 9-10.

6 Cook, Brian M. "Insulating the Environment: Will a ‘New’ 61-Year-Old Material Solve the CFC Problem?" Industry Week 6 July 1992: 59.

More about Ozone Depletion

Open Document