The reading I chose is Math Through the Ages - Calculus and Applied Math. This excerpt concerns the history and development of the use of mathematics to make sense of the workings of the universe. The reading clearly shows that mathematical advances were made by people from many different nationalities from both Europe and Asia. Even though earlier work was not originally shared internationally due to distance, language barriers, and the desire to keep the knowledge secret (Berlinghoff, Algebra), it is clear that many different people were working on the same mathematical conundrums. Although this reading concentrates mainly on European mathematicians, it is made obvious that they were building and expanding on earlier works. “These questions …show more content…
As a result, many mathematical textbooks were written and published making it easier for academics to be informed about the advancements of others. This also made is easier to discover the flaws and omissions in the work of others. These discoveries, however, inspired some mathematicians to search for better answers in order to correct these flaws and omissions. As a result, great strides have been made in the understanding of mathematics over the …show more content…
“Berkeley also argued that Newton, for example, would cut corners in his writing, skipping over difficulties or choosing just the right way to say something so that certain issues were obscured” (Berlinghoff , Calculus 47). Would it have been more ethical to simply state the limitations of the work? This would allow others to immediately see that further work needed to be done and, perhaps, inspire others to research the topic. Would the requirement of such an admission cause academics to publish nothing at all? In such a case, would innovations ever be shared with others? Another question from the reading is also a question of ethics. Is it ethical to write a book under one’s own name while the content is largely the work of another person?
To earn money, he (Johann Bernoulli) arranged to teach the new calculus to a French nobleman, the Marquis de L’Hospital (1661-1704). They agreed that Bernoulli would write letters explaining the calculus, and the content of these letters would then belong to L’Hospital. As a result, the first calculus textbook, published in 1696, carried L’Hospital’s name as author – but its content was basically what was in Johann Bernoulli’s letters! (Berlinghoff, Calculus 44). On the one hand, Johann Bernoulli contributed all the information for the book. On the other hand, Bernoulli agreed
... relationship in one problem that doesn’t appear in others. Among all of this, there is such vastness in how one person might approach a problem compared to another, and that’s great. The main understanding that seems essential here is how it all relates. Mathematics is all about relationships between number and methods and models and how they all work in different ways to ideally come to the same solution.
Michael Guillen, the author of Five Equations that Changed the World, choose five famous mathematician to describe. Each of these mathematicians came up with a significant formula that deals with Physics. One could argue that others could be added to the list but there is no question that these are certainly all contenders for the top five. The book is divided into five sections, one for each of the mathematicians. Each section then has five parts, the prologue, the Veni, the Vidi, the Vici, and the epilogue. The Veni talks about the scientists as a person and their personal life. The Vidi talks about the history of the subject that the scientist talks about. The Vici talks about how the mathematician came up with their most famous formula.
I also learned that mathematics was more than merely an intellectual activity: it was a necessary tool for getting a grip on all sorts of problems in science and engineering. Without mathematics there is no progress. However, mathematics could also show its nasty face during periods in which problems that seemed so simple at first sight refused to be solved for a long time. Every math student will recognize these periods of frustration and helplessness.
The argument in this paper that even though the onus of the discovery of calculus lies with Isaac Newton, the credit goes to Leibniz for the simple fact that he was the one who published his works first. Appending to this is the fact that the calculus wars that ensue was merely and egotistic battle between humans succumbing to their bare primal instincts. To commence, a brief historical explanation must be given about both individuals prior to stating their cases.
Wigner, Eugene P. 1960. The Unreasonable Effectiveness of Mathematics. Communications on Pure and Applied Mathematics 13: 1-14.
Ever wonder how scientists figure out how long it takes for the radiation from a nuclear weapon to decay? This dilemma can be solved by calculus, which helps determine the rate of decay of the radioactive material. Calculus can aid people in many everyday situations, such as deciding how much fencing is needed to encompass a designated area. Finding how gravity affects certain objects is how calculus aids people who study Physics. Mechanics find calculus useful to determine rates of flow of fluids in a car. Numerous developments in mathematics by Ancient Greeks to Europeans led to the discovery of integral calculus, which is still expanding. The first mathematicians came from Egypt, where they discovered the rule for the volume of a pyramid and approximation of the area of a circle. Later, Greeks made tremendous discoveries. Archimedes extended the method of inscribed and circumscribed figures by means of heuristic, which are rules that are specific to a given problem and can therefore help guide the search. These arguments involved parallel slices of figures and the laws of the lever, the idea of a surface as made up of lines. Finding areas and volumes of figures by using conic section (a circle, point, hyperbola, etc.) and weighing infinitely thin slices of figures, an idea used in integral calculus today was also a discovery of Archimedes. One of Archimedes's major crucial discoveries for integral calculus was a limit that allows the "slices" of a figure to be infinitely thin. Another Greek, Euclid, developed ideas supporting the theory of calculus, but the logic basis was not sustained since infinity and continuity weren't established yet (Boyer 47). His one mistake in finding a definite integral was that it is not found by the sums of an infinite number of points, lines, or surfaces but by the limit of an infinite sequence (Boyer 47). These early discoveries aided Newton and Leibniz in the development of calculus. In the 17th century, people from all over Europe made numerous mathematics discoveries in the integral calculus field. Johannes Kepler "anticipat(ed) results found… in the integral calculus" (Boyer 109) with his summations. For instance, in his Astronomia nova, he formed a summation similar to integral calculus dealing with sine and cosine. F. B. Cavalieri expanded on Johannes Kepler's work on measuring volumes. Also, he "investigate[d] areas under the curve" ("Calculus (mathematics)") with what he called "indivisible magnitudes.
There have been many great mathematicians in the world, though many are not well known. People have been studying math for ages, the oldest mathematical object dated all the way back to around 35,000 BC. There are still mathematicians today, studying math and figuring out ways to improve the mathematical world. Some of the most well-known mathematicians include Isaac Newton, Albert Einstein, and Aristotle. These mathematicians (and many more) have influenced the mathematical world and mathematics would not be where it is today without them. There were many great individuals who contributed greatly in mathematics but there was one family with eight great mathematicians who were very influential in mathematics. This was the Bernoulli family. The Bernoulli family contributed a lot to mathematics, medicine, physics, and other areas. Even though they were great mathematicians, there was also hatred and jealousy between many of them. These men did not want their brothers or sons outdoing them in mathematics. Most Bernoulli fathers told their sons not to study mathematics even if they wanted. They were told to study medicine, business, or law, instead, though most of them found a way to study mathematics. The mathematicians in this family include Jacob, Johann, Daniel, Nicolaus I, Nicolaus II, Johann II, Johann III, and Jacob II Bernoulli.
Calculus, the mathematical study of change, can be separated into two departments: differential calculus, and integral calculus. Both are concerned with infinite sequences and series to define a limit. In order to produce this study, inventors and innovators throughout history have been present and necessary. The ancient Greeks, Indians, and Enlightenment thinkers developed the basic elements of calculus by forming ideas and theories, but it was not until the late 17th century that the theories and concepts were being specified. Originally called infinitesimal calculus, meaning to create a solution for calculating objects smaller than any feasible measurement previously known through the use of symbolic manipulation of expressions. Generally accepted, Isaac Newton and Gottfried Leibniz were recognized as the two major inventors and innovators of calculus, but the controversy appeared when both wanted sole credit of the invention of calculus. This paper will display the typical reason of why Newton was the inventor of calculus and Leibniz was the innovator, while both contributed an immense amount of knowledge to the system.
Towers, J., Martin, L., & Pirie, S. (2000). Growing mathematical understanding: Layered observations. In M.L. Fernandez (Ed.), Proceedings of the Annual Meetings of North American Chapter of the International Group for the Psychology of Mathematics Education, Tucson, AZ, 225-230.
To the students, the result of this study can help them be aware of their own difficulties and serve as their guide to have a better result in solving mathematical problems.
A somewhat underused strategy for teaching mathematics is that of guided discovery. With this strategy, the student arrives at an understanding of a new mathematical concept on his or her own. An activity is given in which "students sequentially uncover layers of mathematical information one step at a time and learn new mathematics" (Gerver & Sgroi, 2003). This way, instead of simply being told the procedure for solving a problem, the student can develop the steps mainly on his own with only a little guidance from the teacher.
According to Fahnestock (1998), by sharing scientific observations with the public, they will process the information critically and advance the level of discussion of the observation, as was the case of mathematics. In this case, Fahnestock elaborates that by sharing observations in mathematics in popular science, it was raised to the level at which debate was generated over the matter of mathematical education of
Burton, D. (2011). The History of Mathematics: An Introduction. (Seventh Ed.) New York, NY. McGraw-Hill Companies, Inc.
The history of math has become an important study, from ancient to modern times it has been fundamental to advances in science, engineering, and philosophy. Mathematics started with counting. In Babylonia mathematics developed from 2000B.C. A place value notation system had evolved over a lengthy time with a number base of 60. Number problems were studied from at least 1700B.C. Systems of linear equations were studied in the context of solving number problems.
The abstractions can be anything from strings of numbers to geometric figures to sets of equations. In deriving, for instance, an expression for the change in the surface area of any regular solid as its volume approaches zero, mathematicians have no interest in any correspondence between geometric solids and physical objects in the real world. A central line of investigation in theoretical mathematics is identifying in each field of study a small set of basic ideas and rules from which all other interesting ideas and rules in that field can be logically deduced. Mathematicians are particularly pleased when previously unrelated parts of mathematics are found to be derivable from one another, or from some more general theory. Part of the sense of beauty that many people have perceived in mathematics lies not in finding the greatest richness or complexity but on the contrary, in finding the greatest economy and simplicity of representation and proof.