Subject: Magnetic Resonance Imaging
*INTRODUCTION
Magnetic Resonance Imaging (MRI) has been around since the 1930s. An MRI machine has a great purpose in the medical field. It is a radiology technique that uses magnetism, radio waves, and a computer to produce images of body structures, such as a patient’s head, chest, blood vessels, bones and joints, and much more. MRI machines help doctors figure out what is wrong with their patient's bodies. It allows doctors to take a closer look at a certain location and see things that other machines cannot see. By using this machine, it helps doctors figure out the problem faster and allows them to try and find a treatment or a cure.
METHODS OF RESEARCH
I selected this research topic because it is really fascinating on how doctors can go from guessing where the problem is to knowing exactly just by using an MRI machine during surgery. Not a lot of machines will find anything that might cause death or diseases. My research was conducted using Google and the Oakland Community College library database Points of View. My research mostly focused on the new developments and new features that the MRI provides. The information found included articles regarding its advantages, disadvantages, facts, and how it is used.
FINDINGS
The machine is a 100% accurate method of disease detection throughout the body and is most often used after other testing methods have failed to provide sufficient information to confirm a patient’s diagnosis. According to journalist Mary Bellis, two brilliant men Felix Block of Stanford University and Edward Purcell of Harvard University discovered MRI in the 1930s. Because of their discoveries they used nuclear magnetic resonance (NMR) to study composition of chem...
... middle of paper ...
...her medical devices that contain iron. Metal parts in the eyes can damage the retina.” There is truly no risk involved because even before a doctor puts patients inside the machine they test patients to make sure that they do not have anything inside of them that may possible hurt them.
CONCLUSION
MRI is a unique machine that not only helps people, but also detects if something is wrong inside a patient’s body. MRI machines are getting more advanced each year and every year it saves lives. According to MedicineNet, “It provides valuable information on glands and organ within the abdomen, and accurate information about the structure of the joints, soft tissues, and bones of the body. Often, surgery can be deferred or more accurately directed after knowing the results of an MRI scan.” Doctors will be doing less guessing and more knowing when it comes to surgery.
My interest in MRI started when I first read the book “MRI, The Basics” written by the author Ray Hashemi. By the time I successfully finished my MRI clinical placement in Tehran University of Medical Sciences, I knew for sure that MRI would be the field I would be choosing to take on. What attracts me most about MRI is how beautifully scientist could create a technology that can take advantage of the magnetic moments of human body for imaging it without any harms of ionizing radiation. Although there are drawbacks to MRI, combining it with other modalities would be a more effective approach to an accurate diagnosis.
...r you are elderly, surgery is optional. If you are an active athletic person like Tom Brady, surgery is required for you to get back into your normal active lifestyle.
In the radiology profession first you must write the patient’s file. This includes information about insurance, medical history, what the required x-ray is for and where it is going to be taken on the body. Writing in this way is similar to writing a small research paper. You must do research on the patients and there history and what insurance they have. Writing the report is important because the information must be accurate so the patient can be helped as much as possible. If the information about medical history is incorrect it can cause a huge problem for the patient. For example, if the patient is claustrophobic they would need to get an open room x-ray where the patient isn’t in an enclosed tube so they don’t have a panic attack and potentially injure themselves and others. It is very important to make sure the report has the correct area of where the x-ray needs to be taken. Having the wrong part of the body x-...
The MRI, on the other hand is less expensive and much safer (as it doesn’t expose the patient to potentially harmful radioactive chemicals). The MRI or magnetic resonance imaging device, as an safer alternative, applies a powerful magnetic field around the head of the patient.
After graduating with my Bachelor’s degree, I continued to work as a staff MRI technologist. Even though I loved what I did and had a passion helping people, the lack of diversity within radiology and its limited room for growth bothered me. I decided to look into furthering my career and found an interest in Health Information Technology. Upon researching many different schools through the country offering an online graduate Health Information Technology program, the University of Michigan in Dearborn stood out to me. Medicine and technology have both always been a part of my life, and I am very happy and excited that the chance for it to play a new part has finally arrived. I’m motivated to learn how I can combine the science of information with clinical knowledge so I can help to better patient care and
The role of the radiologist is one that has undergone numerous changes over the years and continues to evolve a rapid pace. Radiologists specialize in the diagnoses of disease through obtaining and interpreting medical images. There are a number of different devices and procedures at the disposal of a radiologist to aid him or her in these diagnoses’. Some images are obtained by using x-ray or other radioactive substances, others through the use of sound waves and the body’s natural magnetism. Another sector of radiology focuses on the treatment of certain diseases using radiation (RSNA). Due to vast clinical work and correlated studies, the radiologist may additionally sub-specialize in various areas. Some of these sub-specialties include breast imaging, cardiovascular, Computed Tomography (CT), diagnostic radiology, emergency, gastrointestinal, genitourinary, Magnetic Resonance Imaging (MRI), musculoskeletal, neuroradiology, nuclear medicine, pediatric radiology, radiobiology, and Ultrasound (Schenter). After spending a vast amount of time on research and going to internship at the hospital, I have come to realize that my passion in science has greatly intensified. Furthermore, both experiences helped to shape up my future goals more prominently than before, which is coupled with the fact that I have now established a profound interest in radiology, or rather nuclear medicine.
Research has influenced me and helped me grow as an advanced practice nurse adding the ability to research and find the evidence-based solutions to patient problems. One example was a patient with symptoms of pulmonary embolism and the computerized tomography angiogram of the chest report was inconclusive for pulmonary embolism. In
Magnetoencephalography (MEG) is a non invasive technique for studing neuronal activity in the brain. Unlike electrophysiological methods that depend on volume currents, MEG depends on the primary current (2, 8).
Radiology is one of the few so-called “physical-science”-based fields of medicine, making it a challenging and rewarding application of an academic interest in science. It combines advanced knowledge of human physiology with principles of atomic physics and nuclear decay, electricity and magnetism, and both organic and inorg...
All in all, MRI is a great imaging modality to properly diagnose a patient. MRI has many advantages and does not use any type of radiation. Even though MRI has been around for about a century it has gained a lot of advancement in the image quality. MRI allows a wide variety of anatomy to be imaged such as soft tissue, spine work, and organs. Like any imaging modality MRI does have a couple of disadvantages, but the advantages out way the risks. MRI will continue to improve and will be one of the best imaging modalities in the medical field.
As a starting point in CT diagnostic imaging the form of radiation used to provide an image are x-rays photons , this can also be called an external radiation dose which detect a pathological condition of an organ or tissue and therefore it is more organ specific. However the physics process can be described as the radiation passes through the body it is received by a detector and then integrated by a computer to obtain a cross-sectional image (axial). In this case the ability of a CT scanner is to create only axial two dimensional images using a mathematical algorithm for image reconstruction. In contrast in RNI the main property for producing a diagnostic image involves the administration of small amounts of radiotracers or usually called radiopharmaceutical drugs to the patient by injection or oral. Radio meaning the emitted of gamma rays and pharmaceutical represents the compound to which a nuclide is bounded or attached. Unlike CT has the ability to give information about the physiological function of a body system. The radiopharmaceutical often referred to as a nuclide has the ability to emit ga...
To begin with, how has technology changed the field of radiology? Since the discovery of X-radiation there has been a need and desire for studying the human body and the diseases without actually any intervention. Over the past fifty years there has been a revolution in the field of radiology affecting medicine profoundly. “The ability to produce computers powerful enough to reconstruct accurate body images, yet small enough to fit comfortably in the radiology department, has been the major key to this progress”(Gerson 66). The core of radiology’s vast development consists of four diagnostic techniques: computed tomography (CT), digital subtraction angiography (DSA), ultrasonography, and magnetic resonance imaging (MRI). These methods of diagnostic imaging provide accurate information that was not seen before. Amid this information advancement, radiologists have broadened their role of diagnostician. Gerson writes, “With the advent of computer-enhanced imagery and new interventional techniques, these physicians are able to take an active part in performing therapeutic procedures”(66). A radiology breakthrough in 1972 was computed tomography discovered by Godfrey Hounsfield and Allan Cormack. Unlike standard radiography, computed tomography would spin the X-ray tube 360 degrees and inversely another 360 degrees while the patient ta...
Magnetic resonance angiography (MRA), similar to CT, uses a magnetic field and pulses of radio wave energy to provide pictures of blood vessels inside the body. A dye is often used during the procedure to make blood vessels appear clearer. Lastly, a cerebral angiogram may be done. This is an x-ray test, where a catheter is inserted into a blood vessel, usually in the groin or arm, and moved from the vessel into the brain. A dye is also injected.
The medical field has revolutionized the health and well being of society. Throughout the decades, the medical field has been through sweeping changes that leave society astonished. It seems like each year that passes by, there is a new technological advancement that modernizes the medical field. Not only do these advancements modernize medicine, but they in return aid doctors, nurses, and specialists by improving their effectiveness within the field. About ten years ago, the da Vinci Surgical System was introduced to hospitals and the medical field, in general because the FDA had finally approved the system within the United States (Dunkin). The da Vinci Surgical System, also known basically as robotic surgery, introduced the use of a surgical robot, which is operated by the doctor himself using a controlled manipulator (Declan et al.). Prior to the invention of robot-assisted surgeries, most surgeons simply did a typical laparoscopic surgery on a patient. Laparoscopic surgery is “a type of surgery performed through several small incisions, rather than one (or more) large ones as in standard "open" surgery” (Schmitz). Through the development of superior technology, such as the surgical robot; it brought about changes that effected doctors, patients, and the medical world.
Hillman, Bruce J. (1997, September 6). Medical imaging in the 21st century. The Lancet, vol. 350, p. 731.