Magnetic Resonance Imaging (MRI) is one of the medical imaging modality which provides excellent internal structures of the body using magnetic radiation (WHO, 2014). Better Health Channel (2011) suggested MRI is notably helpful visualizing contrasts of body organs and soft tissues, WHO pointed out MRI generates excellent images of the brain, spine, muscles, joints and other body structures. The images generated by the MRI machine is multiplanar, this means the image is obtained in multiple planes of the body without the patient changing its body position (WHO, 2014). MRI can also be viewed in 3D (Southern Radiology). MRI was originally known as Nuclear Medical Resonance (NMR) (Siemens, , it was designed and used for chemical and physical molecular analysis. The magnetic resonance phenomenon was discovered by Felix Bloch and Edward Purcell, who have worked independently in 1946; their work was rewarded with the Nobel Prize in 1952 (Dr. J. Hornak, n.d). In 1971, scientists were motivated to use magnetic resonance for detection of diseases after discovering the difference in nuclear magnetic relaxation times of tissues and tumors (Dr. J. Hornak, n.d). In 1973, Lauterbur and Mansfield defined the use of magnetic field gradients for spatial localization of NMR signals, laying the foundation for MRI in the future. Two years later, Richard Ernst used Fourier Transform (an algorithm for the analysis of heat transfer between solid bodies) to encode and reconstruct 2D images, which underpins MRI today (Geva, 2006). The MRI works by using hydrogen atoms’ magnetic properties within the human body to produce high quality images. These protons of the hydrogen atoms can be look upon as bar magnets, in normal situations, they will flow inside... ... middle of paper ... ...ng’ Available from: http://www.who.int/diagnostic_imaging/imaging_modalities/dim_magresimaging/en/ [Last accessed 04/05/2014] Wang J., 2010, ‘MRI Limitations and Safety’ Available from: https://wiki.engr.illinois.edu/display/BIOE414/MRI+Limitations+and+Safety [Last accessed 07/05/2014] http://www.michener.ca/ce/postdiploma/ultrasound.php http://www.sonographycanada.ca/Apps/Pages/about-us-7 http://www.healthmatchbc.org/PDFs/Sonography/Sonography-Regulatory-Bodies.aspx http://www.hprac.org/en/projects/resources/DiagnosticSonographyJurisdictionalReview_EN_Final_28062013_Secured.pdf http://www.hc-sc.gc.ca/ewh-semt/radiation/clini/ultraso/index-eng.php The Advanced Diploma in Sonography was first launched by Nanyang Polytechnic in July 1996 http://www.nyp.edu.sg/nyp/slot/u105/School%20of%20Health%20Sciences/Publish_NYP%20Website%20Info_2013.pdf
My interest in MRI started when I first read the book “MRI, The Basics” written by the author Ray Hashemi. By the time I successfully finished my MRI clinical placement in Tehran University of Medical Sciences, I knew for sure that MRI would be the field I would be choosing to take on. What attracts me most about MRI is how beautifully scientist could create a technology that can take advantage of the magnetic moments of human body for imaging it without any harms of ionizing radiation. Although there are drawbacks to MRI, combining it with other modalities would be a more effective approach to an accurate diagnosis.
The dream that I most desire in life is to become a Diagnostic Medical Sonographer. I’ve always had an interest in the inner workings of the human body, but I also value life, and care for others, and my happiness is the happiness of others. Although this career has its bumps on the road just to see mothers face light up when they see the image of their unborn baby is such a breath taking experience. This all originated from going to one of my sisters’ ultrasound appointment that I ended up going to all my sisters’ ultrasound appointments. I believe becoming a diagnostic medical sonographer is something I can do because I have what it takes. Diagnostic medical sonographer is imaging modality that can work in conjunction with other imaging modalities
The MRI, on the other hand is less expensive and much safer (as it doesn’t expose the patient to potentially harmful radioactive chemicals). The MRI or magnetic resonance imaging device, as an safer alternative, applies a powerful magnetic field around the head of the patient.
After graduating with my Bachelor’s degree, I continued to work as a staff MRI technologist. Even though I loved what I did and had a passion helping people, the lack of diversity within radiology and its limited room for growth bothered me. I decided to look into furthering my career and found an interest in Health Information Technology. Upon researching many different schools through the country offering an online graduate Health Information Technology program, the University of Michigan in Dearborn stood out to me. Medicine and technology have both always been a part of my life, and I am very happy and excited that the chance for it to play a new part has finally arrived. I’m motivated to learn how I can combine the science of information with clinical knowledge so I can help to better patient care and
Do diagnostic Medical Sonographers actually help begin a new life? Yes, according to researchers they do help patients indicate any problems that there may be and what may be expected. This essay will talk about Diagnostic Medical Sonographers and everything it takes to become one and how to become successful as well as why they are important to our global community. Sonographer’s are also known as ultrasound Technicians, they are very important in the medical field because they help patients and physicians diagnose and treat diseases as well as other medical information. The following paragraphs will talk about the information of the Salary and also the Job Responsibilities. With the technicians continuously providing
The role of the radiologist is one that has undergone numerous changes over the years and continues to evolve a rapid pace. Radiologists specialize in the diagnoses of disease through obtaining and interpreting medical images. There are a number of different devices and procedures at the disposal of a radiologist to aid him or her in these diagnoses’. Some images are obtained by using x-ray or other radioactive substances, others through the use of sound waves and the body’s natural magnetism. Another sector of radiology focuses on the treatment of certain diseases using radiation (RSNA). Due to vast clinical work and correlated studies, the radiologist may additionally sub-specialize in various areas. Some of these sub-specialties include breast imaging, cardiovascular, Computed Tomography (CT), diagnostic radiology, emergency, gastrointestinal, genitourinary, Magnetic Resonance Imaging (MRI), musculoskeletal, neuroradiology, nuclear medicine, pediatric radiology, radiobiology, and Ultrasound (Schenter). After spending a vast amount of time on research and going to internship at the hospital, I have come to realize that my passion in science has greatly intensified. Furthermore, both experiences helped to shape up my future goals more prominently than before, which is coupled with the fact that I have now established a profound interest in radiology, or rather nuclear medicine.
Ultrasound Technicians are very valuable in the world of health care. Also known as Diagnostic Medical Sonographer, an Ultrasound Technician uses special machines and equipment that operates on sound waves to determine or diagnose medical problems for patients. There are specializations within this field in which some individuals explore. For instance, areas of specialization includes but not limited to; pregnancy, heart health, gynecology, and abdominal sonography. Although each specializing branch has its own distinctive function, they all involve probing the body to facilitate doctors with diagnoses.
The detection of neural activation in fMRI relies on perturbations of the water magnetization that are associated with the hemodynamic change (3).
Radiology is one of the few so-called “physical-science”-based fields of medicine, making it a challenging and rewarding application of an academic interest in science. It combines advanced knowledge of human physiology with principles of atomic physics and nuclear decay, electricity and magnetism, and both organic and inorg...
I am Lee V. Hebert, Jr., and for the past twenty-three years, I have taught American History, American History Honors/Dual Enrollment and Contemporary Issues at Covington High School. It was my privilege to have Amanda Vicari in my American History Honors class during her junior year of high school. Amanda presented herself as a leader both in and out of class as evidenced by her active participation in many areas of our school. In class she was an active participant; one I could always count on for answers and or discussion and when appropriate, she would assist those students who did not fully understand the lessons presented.
Now with the dangerous jobs in the world and even the dangerous playgrounds, electronic imaging is needed. Electronic imaging, an outstanding technological advancement, helps views bones, organs, and cancerous cells within the body. X-ray or radiograph was the first type of electronic imaging introduced into the medical field. This played an important part in the medical field because it allowed doctors to see broken bones and inflammation inside of organs. Another important electronic imaging that was introduce was the MRI. Magnetic resonance imaging (MRI) aids physicians in seeing soft tissues in the body. With the help of MRIs doctors are able to see whether those tissues are normal or damaged. A little later on functional MRIs were created to see the soft tissues function. Functional MRIs are commonly u...
One of the main reasons that MRI works is because of the patient themselves. Water is 80% of what our bodies are made up of. An MRI machine uses the water molecules in the body to create an image. The MRI uses water molecules to move in different direction which creates some type of electrical current. By moving the water molecules the technologist can distinguish which way they want the image to lay. An MRI machine mainly is used for soft tissue, organs, ligaments, and spinal cords. The MRI machine is a giant magnet. The magnet is made up of different forces and strengths. There is another giant magnet that creates some type of electrical current around the patient lying in ...
As a starting point in CT diagnostic imaging the form of radiation used to provide an image are x-rays photons , this can also be called an external radiation dose which detect a pathological condition of an organ or tissue and therefore it is more organ specific. However the physics process can be described as the radiation passes through the body it is received by a detector and then integrated by a computer to obtain a cross-sectional image (axial). In this case the ability of a CT scanner is to create only axial two dimensional images using a mathematical algorithm for image reconstruction. In contrast in RNI the main property for producing a diagnostic image involves the administration of small amounts of radiotracers or usually called radiopharmaceutical drugs to the patient by injection or oral. Radio meaning the emitted of gamma rays and pharmaceutical represents the compound to which a nuclide is bounded or attached. Unlike CT has the ability to give information about the physiological function of a body system. The radiopharmaceutical often referred to as a nuclide has the ability to emit ga...
Magnetic resonance angiography (MRA), similar to CT, uses a magnetic field and pulses of radio wave energy to provide pictures of blood vessels inside the body. A dye is often used during the procedure to make blood vessels appear clearer. Lastly, a cerebral angiogram may be done. This is an x-ray test, where a catheter is inserted into a blood vessel, usually in the groin or arm, and moved from the vessel into the brain. A dye is also injected.
Images of human anatomy have been around for more than 500 years now. From the sketches created by Leonardo da Vinci, to the modern day Computed Tomography (CT) or Magnetic Resonance Imaging (MRI) scan, images have played a great role in medicine. Evolution in medical imaging brought together people from various disciplines such as Biology, Physics, Chemistry and Mathematics, a collaboration which has further contributed to healthcare as a whole. Modern day imaging improves medical workflows by facilitating a non-invasive insight into human body, accurate and timely diagnostics, and persistence of an analysis.