a. The initial rate is 0.025 mg / sec. This is just the amount formed at time t=10 seconds divided by 10 seconds. b. The rate at 50 seconds is 0.005 mg / sec. This is the amount formed at time t=50 - the amount formed at time t=40 divided by 10 seconds. It is different from the initial rate due to depletion of substrate -- there's a much lower substrate concentration remaining, so substrate is, at t=50, much less likely to bump into the enzyme. c. I would expect there to be virtually no product formed if the enzyme had been heated to 100 degrees celsius first, depending on these factors: 1) How well the reaction proceeds without the enzyme. I have assumed that it doesn't proceed at all at experimental temperatures. 2) I have assumed
This indicated that the effect of high temperature on the activity of peroxidase was irreversible and so if the optimum temperature was restored the enzyme activity will not increase again because denaturation resulted in a permanent change in the shape of the active site of the peroxidase enzyme. In conclusion, the results of this experiment supported the hypothesis that enzymes including peroxidase enzyme are sensitive to temperature changes[George
Living organisms undergo chemical reactions with the help of unique proteins known as enzymes. Enzymes significantly assist in these processes by accelerating the rate of reaction in order to maintain life in the organism. Without enzymes, an organism would not be able to survive as long, because its chemical reactions would be too slow to prolong life. The properties and functions of enzymes during chemical reactions can help analyze the activity of the specific enzyme catalase, which can be found in bovine liver and yeast. Our hypothesis regarding enzyme activity is that the aspects of biology and environmental factors contribute to the different enzyme activities between bovine liver and yeast.
Input variables In this experiment there are two main factors that can affect the rate of the reaction. These key factors can change the rate of the reaction by either increasing it or decreasing it. These were considered and controlled so that they did not disrupt the success of the experiment. Temperature-
The affects of pH, temperature, and salt concentration on the enzyme lactase were all expected to have an effect on enzymatic activity, compared to an untreated 25oC control. The reactions incubated at 37oC were hypothesized to increase the enzymatic activity, because it is normal human body temperature. This hypothesis was supported by the results. The reaction incubated to 60oC was expected to decrease the enzymatic activity, because it is much higher than normal body temperature, however this hypothesis was not supported. When incubated to 0oC, the reaction rate was hypothesized to decrease, and according to the results the hypothesis was supported. Both in low and high pH, the reaction rate was hypothesized to decrease, which was also supported by the results. Lastly, the reaction rate was hypothesized to decrease in a higher salt concentration, which was also supported by the results.
The control for both curves was the beaker with 0% concentration of substrate, which produced no enzyme activity, as there were no substrate molecules for...
The Effect of Temperature on an Enzyme's Ability to Break Down Fat Aim: To investigate the effect of temperature on an enzyme’s (lipase) ability to break down fat. Hypothesis: The graph below shows the rate increasing as the enzymes get closer to their optimum temperature (around 35 degrees Celsius) from room temperature. The enzyme particles are moving quicker because the temperature increases so more collisions and reactions occur between the enzymes and the substrate molecules. After this the graph shows the rate decreasing as the enzymes are past their optimum temperature (higher than). They are getting exposed to temperatures that are too hot and so the proteins are being destroyed.
The rate law determines how the speed of a reaction occurs, thus allowing the study of the overall mechanism formation in reactions. In the general form of the rate law, it is A + B C or r=k[A]x[B]y. The rate of reaction can be affected by the concentrations such as A and B in the previous equation, order of reactions, and the rate constant with each species in an overall chemical reaction. As a result, the rate law must be determined experimentally. In general, in a multi-step reaction, there will be one reaction that is slower than the others.
· I predict that the enzyme will work at its best at 37c because that
When the temperature of the solution is increased, the rate of the reaction increases as well however when it reaches a certain temperature of 40ºC, it begins to decrease. This is because the activity of the enzyme will increase. When the temperature is increased, the reactant particles move faster and have more energy. The particle collisions happen more often, and the more collisions happening the faster the reaction, hence increasing the rate of the reaction. The collisions speed up due to the increase in the kinetic energy and velocity that follows when the temperature increases. When there is a faster velocity, the time that is taken between collisions is less (“Effect of Temperature on Enzyme Activity.”). Which also results in more molecules to reach their activation energy hence increasing the rate of
Purpose: The purpose of this lab is to explore the different factors which effect enzyme activity and the rates of reaction, such as particle size and temperature.
However, the decrease varied depending on the temperature. The lowest temperature, 4 degrees Celsius, experienced a very low decrease of amylose percentage. Temperature at 22 degrees Celsius and 37 degrees Celsius, both had a drastic decrease in amylose percentage. While the highest temperature, 70 degrees Celsius, experienced an increase of amylose percentage. In conclusion, as the temperature increases the percentage of amylose decreases; however, if the temperature gets too high the percentage of amylose will begin to increase. The percentage of amylose increases at high temperatures because there is less enzyme activity at high temperatures. However, when the temperature is lower, more enzyme activity will be present, which results in the decrease of amylose percentage. This is why there is a decrease of amylose percentage in 4, 22, and 37 degrees Celsius. In this experiment the optimal temperature is 37 degrees Celsius, this is because this is the average human body temperature. Therefore, amylase works better at temperatures it is familiar
Alternative Hypothesis 1: If the enzyme catalase reacts, then the rate of reaction for the endotherms will have a consistent reaction rate because the endotherms produce more heat for the enzyme to operate efficiently.
From looking at the results I can conclude that when the pH was 3 and 5. No oxygen was produced, therefore no reactions were taking place. This was because the pH had a high hydrogen ion content, which caused the breaking of the ionic bonds that hold the tertiary structure of the enzyme in place of the syringe. The enzyme lost its functional shape.
The time taken for this to happen is the measure of the rate of reaction. We must do this several times, and change the concentration of sodium thiosulphate. The rate of reaction is a measure of the change, which happens during a reaction in a single unit of time. The things that affect the rate of reaction are as follows. Surface area of the reactants Concentration of the reactants
The primary function of the enzyme in this experiment was to enhance the rate of the reaction to get optimum results which were achieved. As was expected before starting the experiment, in every case, the amount of product formed increased with time until the reaction came to a stop and no change was seen in concentration of substrate or product. So overall the experiment was a success in my opinion with no major mistakes as all data could be calculated and