Johannes Kepler was a German astronomer and mathematician who lived between 1671-1630. Kepler was a Copernican and initially believed that planets should follow perfectly circular orbits (“Johan Kepler” 1). During this time period, Ptolemy’s geocentric theory of the solar system was accepted. Ptolemy’s theory stated that Earth is at the center of the universe and stationary; closest to Earth is the Moon, and beyond it, expanding towards the outside, are Mercury, Venus, and the Sun in a straight line, followed by Mars, Jupiter, Saturn, and the “fixed stars”. The Ptolemaic system explained the numerous observed motions of the planets as having small spherical orbits called epicycles (“Astronomy” 2). Kepler is best known for introducing three effectual, applicable and valid laws of planetary motion by using the precise data he had developed from Tycho Brahe, a Danish astronomer, which helped Copernicus’s theory of the solar system gain universal reception (“Johan Kepler” 1). Nevertheless, he had made further effective contributions in the field of astronomy, which are valid to society and were used to change how the universe was perceived.
Johannes Kepler moved to Prague in 1600 where he worked as an assistant for Tycho Brahe, and eventually as the imperial mathematician to Rudolf II. Brahe allowed Kepler to see no more than a division of his capacious records. Brahe appointed Kepler the job of understanding the orbit of the planet Mars, which was predominantly difficult. Ironically, it was specifically the Martian data that permitted Kepler to devise the correct laws of planetary motion. Kepler was obliged eventually into the comprehension that the orbits of the planets were not the circles claimed by Aristotle and assumed indirec...
... middle of paper ...
...inventors.about.com/library/inventors/bl_Johannes_Kepler.htm
"Johannes Kepler: The Laws of Planetary Motion." Astronomy 161: The Solar System. Web. 17 Dec. 2011. .
Johnson, Michele. "NASA - NASA's Kepler Mission Confirms Its First Planet in Habitable Zone of Sun-like Star." NASA - Home. NASA, 05 Dec. 2011. Web. 17 Dec. 2011. http://www.nasa.gov/mission_pages/kepler/news/kepscicon-briefing.html
Mulder, Henry. "Tycho Brahe and Johannes Kepler." Science and You - Home - a Site to Make Sense of How the World Works and Why. Science and You, © 2000 - 2008 All Rights Reserved. Web. 17 Dec. 2011. http://www.scienceandyou.org/articles/ess_21.shtml
"Previous Posts - Mormonsandscience." Mormonsandscience - Religion & Science Blog. 19 Apr. 2011. Web. 17 Dec. 2011. http://www.mormonsandscience.com/1/previous/2.html
In his book, Repcheck recounts how a Catholic Church cleric invented a highly complicated theory of the heavens’ architecture. Copernicus made a breakthrough by solving a significant astronomical problem. Everybody except the astronomers had earlier accepted Aristotle’s concept that heavenly objects revolved around the earth in perfectly circular orbits. The astronomers were opposed to this notion since their calculations could not work according to it. Repcheck introduces Ptolemy who described a cosmos in which the earth positioned itself somewhat off-center and other heavenly bodies revolved in one circular orbit inside a second ideal circle at changeable speeds. Even though Ptolemy’s model was rather complicated, astronomers found it to be reasonable in their calculations. Astronomers were still using this new concept even 1500 years later. In this regard, the author starts to bring Copernicus into the picture.
Kuhn, T. S., 1957. The Copernican Revolution: Planetary Astronomy in the Development of Western Thought. Londen: Harvard University Press.
Over the next 50 years Copernicus’s book would slowly make its way across Europe. In 1566 a second edition was published without the false preface. The church denounced the book and Copernicus for “going against the bible”, but eventually began to accept it and allow it to be taught. Copernicus’s work was profound and changed the direction of Astronomy. It dared to challenge the notion that the Earth was the center of the universe, and that heavenly matter was unchanging and perfect. Over the next several hundred years Brahe would observe, Kepler and Newton would pour over the numbers and they would find the Copernicus’s model had underlying truths, some flaws, but with tweaking and vigilant observations of the celestial motions it would be the basis that lead them to the model we know today. Bringing forth what we know as the Copernican Revolution.
Until Copernicus, the teachings of the Greek astronomer Ptolemy were considered the indisputable truth. His idea was that the Earth was the stationary center of the universe. The sun, moon, planets, and th...
Tycho Brahe is remembered for many things: his golden nose, his ignominious death, and his famous last words. All of these things have gone down in history. However, Tycho Brahe was well-known in his time as a respected and well-paid astronomer. His observations were second to none. He was unsatisfiable and meticulous in his profession, building two of the finest observatories of his time, the second because the first was not up to his own high standards. He is still regarded as one of the best naked-eye observationalists of all time (Burke-Gaffney, 153).
In 1543 Nicholas Copernicus, a Polish Canon, published “On the Revolution of the Celestial Orbs”. The popular view is that Copernicus discovered that the earth revolves around the sun. The notion is as old as the ancient Greeks however. This work was entrusted by Copernicus to Osiander, a staunch Protestant who though the book would most likely be condemned and, as a result, the book would be condemned. Osiander therefore wrote a preface to the book, in which heliocentrism was presented only as a theory which would account for the movements of the planets more simply than geocentrism did, one that was not meant to be a definitive description of the heavens--something Copernicus did not intend. The preface was unsigned, and everyone took it to be the author’s. That Copernicus believed the helioocentric theory to be a true description of reality went largely unnoticed. In addition to the preface, this was partly because he still made reassuring use of Ptolemy's cycles and epicycles; he also borrowed from Aristotle the notion that the planets must move in circles because that is the only perfect form of motion.
The first record of the movement of the planets was produced by Nicolaus Copernicus. He proposed that the earth was the center of everything, which the term is called geocentric. Kepler challenged the theory that the sun was the center of the earth and proposed that the sun was the center of everything; this term is referred to as heliocentric. Kepler’s heliocentric theory was accepted by most people and is accepted in today’s society. One of Kepler’s friends was a famous person named Galileo. Galileo is known for improving the design and the magnification of the telescope. With improvement of the telescope Galileo could describe the craters of the moon and the moons of Jupiter. Galileo also created the number for acceleration of all free falling objects as 9.8 meters per second. Galileo’s and Kepler’s theories were not approved by all people. Their theories contradicted verses in the bible, so the protestant church was extremely skeptical of both Galileo and Kepler’s
The team of Tycho Brahe and John Keppler were the next to study Copernicus’ theory. Brahe tried to disprove Copernicus’ theory and tried to prove the idea of the earth-centered universe. Although Keppler was Brahe’s assistant, he argued for Copernicus and analyzed Brahe’s data to conclude that the sun was the center of the universe. Keppler also used Brahe’s data to discover the movement of the planet Mars. This was the key to explaining all planetary motion. ii He also discovered the planets move in elliptical orbits, which also went against the beliefs of the church. Kepp...
More than 50 years after the publication of Astronomiae Pars Optica, another man was carrying on Kepler’s work in the field of optics....
This paper is an overview of the Kepler spacecraft and its mission in space. According to the National Aeronautics and Space Association (NASA), Kepler, named after Renaissance astronomer Johannes Kepler, “is a space observatory launched…to discover Earth-like planets orbiting other stars.” Kepler does this by searching for planets within our galaxy that have a similar size to Earth within a habitable zone. A habitable zone is a distance between the planet and its star where water can exist on the planet’s surface. Additionally, Kepler is aimed at searching for planets with similar one-year orbits like that of Earth. As technology advances on Earth, increased standards of living and life expectancies have taken a toll on Earth’s fleeting, finite resources. Kepler potentially provides scientists with information regarding planets that can serve as a future home when resources have diminished and information that can foreshadow inevitabilities about Earth through older, Earth-like planets.
Copernicus was a scientist and philosopher whose theory proposed that the sun was stationary, and the heavens orbit around the sun. Galileo tried to convince the Church not to abolish the Copernican theory but was told that he was not to entertain such thoughts with others.... ... middle of paper ... ...(n.d.).
The “Galileo Galilei.” Starry Messenger. 23 Oct. 2011. Kayne, R. “
Much to the dismay of the Church, two astronomers Galileo and Kepler had the audacity to challenge the authorities by suggesting that the sun-not the earth-was at the center of the universe. The church had a stronghold on the way the spiritual and physical world worked, so these discoveries only added to the Church’s resistance to their aims. Their discoveries came only after Kepler and Galileo began to question ancient theories about how the world functioned. These ancient truths were widely held but were inconsistent with the new observations that they had made. Kepler had discovered the laws of planetary motion which suggested that the planet would move in elliptical orbits, while Galileo followed with his discovery of the principle of inertia. Galileo concluded his finding b...
Galileo was probably the greatest astronomer, mathematician and scientist of his time. In fact his work has been very important in many scientific advances even to this day.