The percent yield of carvacrol was 163.97 percent. This indicates that the product weighted was not what was expected. This was expected, because multiple complications occurred during the stage of the experiment. The final product used to weigh was a yellow liquid, that smelt like ether. In the final step of the experiment, the removal of the ether, was not successful and as a result the percent yield was affected dramatically. The fail to remove the ether could be due to a mistake made during the liquid/liquid extraction. The organic layer and aqueous layer was mixed up during the first washing phase, and the aqueous layer ended up being washed with water. Once the mistake was realized, the organic layers collected were taken and washed.
As a final point, the unknown secondary alcohol α-methyl-2-naphthalenemethanol had the R-configuration since it reacted the fastest with S-HBTM and much slower with R-HBTM. TLC was a qualitative method and ImageJ served as a quantitative method for determining which reaction was the faster esterification. Finally, 1H NMR assisted in identifying the unknown from a finite list of possible alcohols by labeling the hydrogens to the corresponding peaks.
The purpose of the Unknown White Compound Lab was to identify the unknown compound by performing several experiments. Conducting a solubility test, flame test, pH paper test, ion test, pH probe test, conductivity probe test, and synthesizing the compound will accurately identified the unknown compound. In order to narrow down the possible compounds, the solubility test was used to determine that the compound was soluble in water. Next, the flame test was used to compare the unknown compound to other known compounds such as potassium chloride, sodium chloride, and calcium carbonate. The flame test concluded that the cation in the unknown compound was potassium. Following, pH paper was used to determine the compound to be neutral and slightly
The actual amount of crude product was determined to be 3.11 grams. The percent yield of the crude product was determined to be 67.75 %. The actual amount of pure product formed was found to be 4.38 grams. The percent yield of the pure product was determined to be 95.42%. Regarding the thin layer chromatography, the line from the solvent front is 8 centimeters.
Extraction is a separation method that is often used in the laboratory to separate one or more components from a mixture. Sucrose was separated at the beginning because it is the most immiscible and it’s strongly insoluble. Next Acetylsalicylic Acid was separated which left Acetanilide alone. Variety steps could have led to errors occurring. For example the step of separation, when dichloromethane layer was supposed to be drained out, it could be possible some aqueous layer was drained with it. Which could make the end result not as accurate. Also errors could have occurred if possibly some dichloromethane was not drained out. Both way could interfere with end result of figuring the amount of each component in the mixture. The solids percentage were 22.1% more than the original. That suggests that solids weren’t separated completely which clarifies the reason the melting points that were recorded were a slightly lower than the actual component’s melting point. The melting point for Acetylsalicylic Acid is 136 C but that range that was recorded during the experiment was around 105 C to 118 C. The melting points were slightly lower than the literature value. Sucrose was the purest among all component due to its higher melting point which follows the chemical rule that the higher the melting point the more pure the component
The goal of this two week lab was to examine the stereochemistry of the oxidation-reduction interconversion of 4-tert-butylcyclohexanol and 4-tert-butylcyclohexanone. The purpose of first week was to explore the oxidation of an alcohol to a ketone and see how the reduction of the ketone will affect the stereoselectivity. The purpose of first week is to oxidize the alcohol, 4-tert-butylcyclohexanol, to ketone just so that it can be reduced back into the alcohol to see how OH will react. The purpose of second week was to reduce 4-tert-butylcyclohexanol from first week and determine the effect of the product's diastereoselectivity by performing reduction procedures using sodium borohydride The chemicals for this lab are sodium hypochlorite, 4-tert-butylcyclohexanone
2-ethyl-1,3-hexanediol. The molecular weight of this compound is 146.2g/mol. It is converted into 2-ethyl-1-hydroxyhexan-3-one. This compounds molecular weight is 144.2g/mol. This gives a theoretical yield of .63 grams. My actual yield was .42 grams. Therefore, my percent yield was 67%. This was one of my highest yields yet. I felt that this was a good yield because part of this experiment is an equilibrium reaction. Hypochlorite must be used in excess to push the reaction to the right. Also, there were better ways to do this experiment where higher yields could have been produced. For example PCC could have been used. However, because of its toxic properties, its use is restricted. The purpose of this experiment was to determine which of the 3 compounds was formed from the starting material. The third compound was the oxidation of both alcohols. This could not have been my product because of the results of my IR. I had a broad large absorption is the range of 3200 to 3500 wavenumbers. This indicates the presence of an alcohol. If my compound had been fully oxidized then there would be no such alcohol present. Also, because of my IR, I know that my compound was one of the other 2 compounds because of the strong sharp absorption at 1705 wavenumbers. This indicates the presence of a carbonyl. Also, my 2,4-DNP test was positive. Therefore I had to prove which of the two compounds my final product was. The first was the oxidation of the primary alcohol, forming an aldehyde and a secondary alcohol. This could not have been my product because the Tollen’s test. My test was negative indicating no such aldehyde. Also, the textbook states that aldehydes show 2 characteristic absorption’s in the range of 2720-2820 wavenumbers. No such absorption’s were present in my sample. Therefore my final product was the oxidation of the secondary alcohol. My final product had a primary alcohol and a secondary ketone
The primary goal of this laboratory project was to identify an unknown compound and determine its chemical and physical properties. First the appearance, odor, solubility, and conductivity of the compound were observed and measured so that they could be compared to those of known compounds. Then the cation present in the compound was identified using the flame test. The identity of the anion present in the compound was deduced through a series of chemical tests (Cooper, 2009).
The question that was proposed for investigation was: Can the theoretical, actual, and percent yields be determined accurately (Lab Guide pg. 83)?
...e 3. Both letters A and B within the structure of trans-9-(2-phenylethenyl) anthracene, that make up the alkene, have a chemical shift between 5-6 ppm and both produce doublets because it has 1 adjacent hydrogen and according to the N + 1 rule that states the number of hydrogens in the adjacent carbon plus 1 provides the splitting pattern and the number of peaks in the split signal, which in this case is a doublet.1 Letters C and D that consist of the aromatic rings, both are multiplets, and have a chemical shift between 7-8 ppm. 1H NMR could be used to differentiate between cis and trans isomers of the product due to J-coupling. When this occurs, trans coupling will be between 11 and 19 Hz and cis coupling will be between 5 and 14 Hz, showing that cis has a slightly lowered coupling constant than trans, and therefore have their respective positions in a product. 2
Random and systematic errors are both factors that can affect the reliability and accuracy of the results respectively. As all the graphs contained outliers, and hence, scatter, this indicates that random errors were present. Such errors may result from the inconsistent masses of the Alka Seltzer tablets. As these tablets were cut manually with a knife, it is unlikely that the mass of each half of an Alka Seltzer tablet would be the same. Thus, when using the tablets to react with HCl, the true number of tablets reacting would have not been the same as the number denoted for the trial, and with each repeated trial for the same number of tablets reacting, the reacting mass and ratio would have not been inconsistent. Consequently, the
The IR spectrum that was obtained of the white crystals showed several functional groups present in the molecule. The spectrum shows weak sharp peak at 2865 to 2964 cm-1, which is often associated with C-H, sp3 hybridised, stretching in the molecule, peaks in this region often represent a methyl group or CH2 groups. There are also peaks at 1369 cm-1, which is associated with CH3 stretching. There is also C=O stretching at 1767 cm-1, which is a strong peak due to the large dipole created via the large difference in electronegativity of the carbon and the oxygen atom. An anhydride C-O resonates between 1000 and 1300 cm-1 it is a at least two bands. The peak is present in the 13C NMR at 1269 and 1299 cm-1 it is of medium intensity.
A weak peak was at a position between 1600-1620 cm-1 can also be seem in the IR, which was likely to be aromatic C=C functional group that was from two benzene rings attached to alkynes. On the other hand, the IR spectrum of the experimental diphenylacetylene resulted in 4 peaks. The first peak was strong and broad at the position of 3359.26 cm-1, which was most likely to be OH bond. The OH bond appeared in the spectrum because of the residue left from ethanol that was used to clean the product at the end of recrystallization process. It might also be from the water that was trapped in the crystal since the solution was put in ice bath during the recrystallization process. The second peak was weak, but sharp. It was at the position of 3062.93 cm-1, which indicated that C-H (sp2) was presence in the compound. The group was likely from the C-H bonds in the benzene ring attached to the alkyne. The remaining peaks were weak and at positions of 1637.48 and 1599.15 cm-1, respectively. This showed that the compound had aromatic C=C function groups, which was from the benzene rings. Overall, by looking at the functional groups presented in the compound, one can assume that the compound consisted of diphenylacetelene and ethanol or
The task of interpreting William T. Vollmann’s works seems as monumental for the reader as writing the story oneself. The text of “The Visible Spectrum”, in fact, does not feature any extensively challenging vocabulary or particularly thwarting subject matter; yet it would seem that in all of its “objectivity” and “transparency”, there lies no obvious, dominant or intended interpretation. The narrative is ambiguous in its “message” to an infinite degree, and thus the reader must construct its “meaning” given only scraps of discontinuous plot, description and dialogue.
The next type of spectra to look at is Carbon NMR. In Carbon NMR a spectrum is produced that has peaks for each unique carbon in the molecule. Carbon NMR is possible because radio waves are shot through a sample already aligned on a very large magnet and the nuclei of the atoms switch to a higher energy state. It requires different wavelengths to flip different carbons. The locations of the peaks on the spectrum shows what type of functional groups the carbons are part of. Figure 6 shows the Carbon NMR for ibuprofen. In the figure there is a drawing of ibuprofen with the unique carbons numbered. These numbers align to the spectra underneath and the information given in purple. Anywhere from 10-60ppm are alkanes. That means there should have
...ew chlorinated solvent creates severe aging such as Carbon tetrachloride, 1, 1, 1-trichloroethane etc. Age hardening occurs in almost all the solvents but weaker the solvent i.e. toluene lower the hardening (4). A vacuum extraction cylinder is used to remove the extract from the cylinder. In this procedure, the method for recovery is a modification of Rotovapor method. To remove the asphalt from the mix about seven wash of solvent is necessary (1). There are few problems using SHRP method. This method recovers only 50g of sample which is enough for one test like Dynamic Shear Rheometer (DSR). Several extraction and recoveries would be necessary in order to run some more tests e.g. Pressure Aging Vessel (PAV) and Bending Beam Rheometer (BBR). Each extraction and recovery requires six hours and has to be operated carefully to avoid the incidence of flash boiling (2).