Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Rate of fermentation of yeast by different sugars
Effect of different types of sugar on yeast respration
The effect of different sugars on yeast research
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Recommended: Rate of fermentation of yeast by different sugars
The line graph and data table shown above both depict the results that my group and I gathered while completing our lab experiment. Each set of yeast, water, and sugar we tested on blew up the balloon to some extent. While the control group, water and yeast without sugar, did have cause some yeast fermentation to occur, it was not as significant, nor as fast as our other two experimental groups. The other two substances were affected by the added type of sugar, as well. The added sucrose to the yeast and water mixture had a considerable difference than to the control group or even with the maltose set. The maltose combined with the yeast and water created more than enough carbon dioxide to blow up the balloon, but it was not as fast or as large …show more content…
There are many forms of sugar in the world that could have been added to this study. While sucrose is the most common sugar and maltose is easily accessible and common, too; other sugars might be used in this lab to find their affect on the yeast and water combination. Fructose or glucose, monosaccharides might be added in and have a slower rate due to their being only one molecule and nothing for water to break down and dissolve to form a reaction with the yeast. Or lactose, a disaccharide like the maltose and sucrose used during this experiment, might have a similar carbon dioxide releasing rate, causing the balloon to grow a bit and taper off like the maltose. It could grow fast and steadily like the sucrose tested. These are limitations that need to be considered when studying this lab. There are more factors and possibilities than the few conveyed during this …show more content…
The sucrose balloon continued to grow after 10 minutes, while the maltose balloon growth tapered off. As the CO2 production from the maltose, water, yeast mixture decreased between 10 and 15 minutes; the sucrose, water, yeast set was increasing. This difference, even after the 15 minute sizing where the maltose balloon increased a bit, gradually, in size, was enough to illustrate the overall outcome of the experiment. Sucrose added into water and yeast created the largest balloon through carbon dioxide production of the yeast fermentation process. Maltose, the next largest balloon of the three tested, had an increase of size at first, proving that the yeast did ferment more than the control group, but not as steadily as sucrose. In total, the data we gathered through the experimental process proved our hypothesis: added sugars enhanced the fermentation of
2. A test tube was then filled with 35ml of yeast and placed in the
The results shown in table 1 clearly show that when the volume of yeast is increased in the milk solution, so does the rate of oxygen depletion and therefore the rate of eutrophication. It shows that when 2mL of yeast solution was added it took 32.86 minutes on average for the milk to be depleted of oxygen, while it took only 7.46 minutes on average for the 10mL of yeast to use up the oxygen present.
Thorough analysis of the graph displayed enough evidence suggesting that an increase in substrate concentration will increase the height of bubbles until it reaches the optimum amount of substrate concentration, resulting in a plateau in the graphs (figure 2). Hence; supported the hypothesis.
Fermentation is the biological process which allows humans to brew beer, or any other alcoholic beverage. This process occurs in the absence of oxygen, as a means for the cell to produce adenosine triphosphate (ATP), the source of cellular energy. Though little energy can be produced in this manner, it allows the yeast to survive in t...
Rate of Respiration in Yeast Aim: I am going to investigate the rate of respiration of yeast cells in the presence of two different sugar solutions: glucose, sucrose. I will examine the two solutions seeing which one makes the yeast respire faster. I will be able to tell which sugar solution is faster at making the yeast respire by counting the number of bubbles passed through 20cm of water after the yeast and glucose solutions have been mixed. Prediction: I predict that the glucose solution will provide the yeast with a better medium by which it will produce a faster rate of respiration. This is because glucose is the simplest type of carbohydrate (monosaccharide).
In this experiment, there were several objectives. First, this lab was designed to determine the difference, if any, between the densities of Coke and Diet Coke. It was designed to evaluate the accuracy and precision of several lab equipment measurements. This lab was also designed to be an introduction to the LabQuest Data and the Logger Pro data analysis database. Random, systematic, and gross errors are errors made during experiments that can have significant effects to the results. Random errors do not really have a specific cause, but still causes a few of the measurements to either be a little high or a little low. Systematic errors occur when there are limitations or mistakes on lab equipment or lab procedures. These kinds of errors cause measurements to be either be always high or always low. The last kind of error is gross errors. Gross errors occur when machines or equipment fail completely. However, gross errors usually occur due to a personal mistake. For this experiment, the number of significant figures is very important and depends on the equipment being used. When using the volumetric pipette and burette, the measurements are rounded to the hundredth place while in a graduated cylinder, it is rounded to the tenth place.
The Effects of Concentration of Sugar on the Respiration Rate of Yeast Investigating the effect of concentration of sugar on the respiration rate of yeast We did an investigation to find how different concentrations of sugar effect the respiration rate of yeast and which type of concentration works best. Respiration is not breathing in and out; it is the breakdown of glucose to make energy using oxygen. Every living cell in every living organism uses respiration to make energy all the time. Plants respire (as well as photosynthesise) to release energy for growth, active uptake, etc…. They can also respire anaerobically (without oxygen) to produce ethanol and carbon dioxide as by-products.
The purpose of this investigation is to test the effects of multiple sugar substances on the respiration of yeast. Most people think of yeast when they think of what makes bread rise, cheese, alcoholic beverages, or other food products. Another type of yeast can also cause yeast infections, an infection of the skin. Yeasts (Saccharomyces) are tiny, microscopic organisms with a thin membrane and are usually oval or circular-shaped. They are a type of single-celled fungi of the class Ascomycetes, capable of processing sugar into alcohol and carbon dioxide (CO2 ) ; this process is known as fermentation. Fermentation and the products are the main focus points for this experiment being that cellular respiration of yeasts happens via the process of fermentation, which creates by-products of alcohol and CO2. The level of CO2 produced by the yeasts will show how effective each sugar substance is in providing cellular energy for the yeasts.
If the amount of either hydrogen peroxide or yeast is different in any of the sections in the experiment then the results
Brewers call the addition of yeast pitching. Once the yeast has been pitched the wort can properly be called beer. Fermentation can last a few days or a few weeks depending of the strain of yeast and the strength of the beer. During the process the yeast reproduce and then metabolize the sugars, making C02, alcohol, and a host of other flavorful and aromatic compounds that add complexity to the beer. During the height of fermentation the beer is capped by a thick creamy foam called kreusen. Once the available sugars have been consumed the yeast cells clump together or floc and fall to the bottom of the
There were five test solutions used in this experiment, water being the control, which were mixed with a yeast solution to cause fermentation. A 1ml pipetman was used to measure 1 ml of each of the test solutions and placed them in separated test tubes. The 1 ml pipetman was then used to take 1ml of the yeast solution, and placed 1ml of yeast into the five test tubes all containing 1 ml of the test solutions. A 1ml graduated pipette was placed separately in each of the test tubes and extracted 1ml of the solutions into it. Once the mixture was in the pipette, someone from the group placed a piece of parafilm securely on the open end of the pipette and upon completion removed the top part of the graduated pipette.
Investigating the Effect of Temperature on the Fermentation of Yeast To fully investigate the effect of temperature on the rate of fermentation of yeast Background Information Yeast is a single-cell fungus, occurring in the soil and on plants, commonly used in the baking and alcohol industries. Every living thing requires energy to survive and through respiration, glucose is converted into energy. There are two types of respiration available to living cells are: 1.
“Fermentation occurs in fruits, bacteria, yeasts, fungi, as well as in mammalian muscle”(Biology Online, 2008, p. xx-xx) . “Yeasts were discovered to have connection with fermentation as observed by the French chemist, Louis Pasteur” (Biology Online, 2008, p. xx-xx). “Pasteur originally defined fermentation as respiration without air” (Biology Online, 2008, p. xx-xx). “However, fermentation does not have to always occur in anaerobic condition” (Biology Online, 2008, p. xx-xx). “Yeasts still prefer to undergo fermentation to process organic compounds and generate ATP even in the presence of oxygen” (Biology Online, 2008, p. xx-xx). “However, in mammalian muscles, they turn from oxidative phosphorylation (of cellular respiration) to fermentation when oxygen supply becomes limited, especially during a strenuous activity such as intensive exercising” (Biology Online, 2008, p. xx-xx).
Imagine a person buys a loaf of bread and a cake from a bakery, and then the food is set down in the automobile and forgotten about for a few days. The person comes back only to see that the loaf of bread is covered in green fuzzy mold but the cake looks brand new. Why? The cake-contained more sugar than the bread, and sugar is used as a preservative. That is why the mold grew faster on the bread.
Although not shown in the fermentation reaction, numerous other end products are formed during the course of fermentation Simple Sugar → Ethyl Alcohol + Carbon Dioxide C6 H12 O6 → 2C H3 CH2 OH + 2CO2 The basic respiration reaction is shown below. The differences between an-aerobic fermentation and aerobic respiration can be seen in the end products. Under aerobic conditions, yeasts convert sugars to