Rate of Respiration in Yeast
Aim: I am going to investigate the rate of respiration of yeast cells
in the presence of two different sugar solutions: glucose, sucrose. I
will examine the two solutions seeing which one makes the yeast
respire faster. I will be able to tell which sugar solution is faster
at making the yeast respire by counting the number of bubbles passed
through 20cm of water after the yeast and glucose solutions have been
mixed.
Prediction: I predict that the glucose solution will provide the yeast
with a better medium by which it will produce a faster rate of
respiration. This is because glucose is the simplest type of
carbohydrate (monosaccharide). However sucrose is a complex sugar it
contains large molecules making it a disaccharide.
Due to the large molecules being saturated and the small molecules
being unsaturated this will allow the glucose to mix easily with the
yeast therefore making it respire more frequently. The sucrose sugar
however having larger molecules will find it harder to mix in with the
yeast; this will make the rate of respiration in the sucrose much
slower as it is not as efficient as the glucose.
Yeast requires enzymes to digest the food on which the yeast is
living. The enzymes digest the food the yeast is living on (normally
sugars such as Glucose and Sucrose) breaking down the large molecules
into smaller ones. It takes longer to break down the large molecules
rather than the smaller molecules. This means that the yeast does not
need to do any work when provided with small molecule foods such as
glucose. The small molecule foods allow the yeast to respire easily.
By already h...
... middle of paper ...
... improved in any way unless another sugar was utilized.
There were some things that were difficult to keep constant in the
experiment and this is where my results may have wavered slightly. It
was difficult to keep the temperature of the warm water constant as it
dipped at times which could have had an effect on how efficient the
enzymes were. The delivery tubes were becoming blocked sometimes and
by shaking the test tube it cleared them. However as we shook the test
tube a large number of bubbles were formed which may not have formed
if we didn't shake the test tube. Also we might have been shaking the
test tubes at different speed which may have caused a greater number
of bubbles to be released.
Overall I felt that the experiment was accurate and reliable and there
was not much that could have been changed on it.
The experiment was not a success, there was percent yield of 1,423%. With a percent yield that is relatively high at 1,423% did not conclude a successful experiment, because impurities added to the mass of the actual product. There were many errors in this lab due to the product being transferred on numerous occasions as well, as spillage and splattering of the solution. Overall, learning how to take one product and chemically create something else as well as how working with others effectively turned out to be a
2. A test tube was then filled with 35ml of yeast and placed in the
The results shown in table 1 clearly show that when the volume of yeast is increased in the milk solution, so does the rate of oxygen depletion and therefore the rate of eutrophication. It shows that when 2mL of yeast solution was added it took 32.86 minutes on average for the milk to be depleted of oxygen, while it took only 7.46 minutes on average for the 10mL of yeast to use up the oxygen present.
... got very different results, however they had carried out the experiment in slightly different ways, making it difficult to compare results.
The Effect of Temperature on the Rate of Respiration in Yeast There are two types of respiration in yeast: Aerobic: [IMAGE] Anaerobic: Glucose [IMAGE] Carbon dioxide + ethanol + energy Respiration is controlled by enzymes, which are proteins which speed up one or more biological reactions. Within any cell many chemical reactions are going on at any one time. Yeast has many different types of enzymes that speed up respiration. Prediction I predict that as temperature increases, the rate will also increase, until a certain optimum temperature, after which, the rate will decrease until the rate is zero as respiration has stopped completely. Reason
Do you know how you are able to run long distances or lift heavy things? One of the reasons is cellular respiration. Cellular respiration is how your body breaks down the food you’ve eaten into adenosine triphosphate also known as ATP. ATP is the bodies energy its in every cell in the human body. We don’t always need cellular respiration so it is sometimes anaerobic. For example, when we are sleeping or just watching television. When you are doing activities that are intense like lifting weights or running, your cellular respiration becomes aerobic which means you are also using more ATP. Cellular respiration is important in modern science because if we did not know about it, we wouldn’t know how we are able to make ATP when we are doing simple task like that are aerobic or anaerobic.
The Effects of Concentration of Sugar on the Respiration Rate of Yeast Investigating the effect of concentration of sugar on the respiration rate of yeast We did an investigation to find how different concentrations of sugar effect the respiration rate of yeast and which type of concentration works best. Respiration is not breathing in and out; it is the breakdown of glucose to make energy using oxygen. Every living cell in every living organism uses respiration to make energy all the time. Plants respire (as well as photosynthesise) to release energy for growth, active uptake, etc…. They can also respire anaerobically (without oxygen) to produce ethanol and carbon dioxide as by-products.
The purpose of this investigation is to test the effects of multiple sugar substances on the respiration of yeast. Most people think of yeast when they think of what makes bread rise, cheese, alcoholic beverages, or other food products. Another type of yeast can also cause yeast infections, an infection of the skin. Yeasts (Saccharomyces) are tiny, microscopic organisms with a thin membrane and are usually oval or circular-shaped. They are a type of single-celled fungi of the class Ascomycetes, capable of processing sugar into alcohol and carbon dioxide (CO2 ) ; this process is known as fermentation. Fermentation and the products are the main focus points for this experiment being that cellular respiration of yeasts happens via the process of fermentation, which creates by-products of alcohol and CO2. The level of CO2 produced by the yeasts will show how effective each sugar substance is in providing cellular energy for the yeasts.
site) then the quicker the starch (substrate) will be broken. down, resulting in a faster reaction rate. Therefore, a smaller amount. of amylase will result in a slower reaction rate. [ IMAGE] Text Box: Fischerâ€TMs †Lock and Keyâ€TM hypothesis (1890).
Overview of Cellular Respiration and Photosynthesis Written by Cheril Tague South University Online Cellular Respiration and Photosynthesis are both cellular processes in which organisms use energy. However, photosynthesis converts the light obtained from the sun and turns it into a chemical energy of sugar and oxygen. Cellular respiration is a biochemical process in which the energy is obtained from chemical bonds from food. They both seem the same since they are essential to life, but they are very different processes and not all living things use both to survive ("Difference Between Photosynthesis and Cellular Respiration", 2017). In this paper I will go over the different processes for photosynthesis and the processes for cellular respiration and how they are like each other and how they are essential to our everyday life.
...remain the same at 4ºC and 25ºC. The final result of this experiment was that glucose was more present in environments of higher temperatures. Our hypothesis and predictions were wrong because lower temperatures do not break down the enzymes because they become denatured. The enzyme activity decreases once the temperature decreases, as well. Enzyme activity increases when there is a rise in temperature, which is why lactose is broken down in much higher temperatures, resulting in a high presence of glucose.
This lab attempted to find the rate at which Carbon dioxide is produced when five different test solutions: glycine, sucrose, galactose, water, and glucose were separately mixed with a yeast solution to produce fermentation, a process cells undergo. Fermentation is a major way by which a living cell can obtain energy. By measuring the carbon dioxide released by the test solutions, it could be determined which food source allows a living cell to obtain energy. The focus of the research was to determine which test solution would release the Carbon Dioxide by-product the quickest, by the addition of the yeast solution. The best results came from galactose, which produced .170 ml/minute of carbon dioxide. Followed by glucose, this produced .014 ml/minute; finally, sucrose which produced .012ml/minute of Carbon Dioxide. The test solutions water and glycine did not release Carbon Dioxide because they were not a food source for yeast. The results suggest that sugars are very good energy sources for a cell where amino acid, Glycine, is not.
The mixture for that table’s flask was 15 mL Sucrose, 10 mL of RO water and 10 mL of Yeast, which the flask was then placed in an incubator at 37 degrees Celsius. In my hypothesis for comparison #4 the measurements would go up again with every 15 min. intervals because of the high tempeture and also be higher that then Controlled Table’s measurements. Hypothesis was right for the first part but was wrong for the second part of the comparison, the measurements did increase in the table’s personal flask but the measurements did not get higher than the Controlled Table’s measurements, see chart below. In conclusion, I feel that the substitution of glucose for sucrose made the enzymes work just as hard as the Controlled Table’s flask but just not as much because sucrose was too strong for the enzymes to
Investigating the Effect of Temperature on the Fermentation of Yeast To fully investigate the effect of temperature on the rate of fermentation of yeast Background Information Yeast is a single-cell fungus, occurring in the soil and on plants, commonly used in the baking and alcohol industries. Every living thing requires energy to survive and through respiration, glucose is converted into energy. There are two types of respiration available to living cells are: 1.
There is also the potential of human error within this experiment for example finding the meniscus is important to get an accurate amount using the graduated pipettes and burettes. There is a possibility that at one point in the experiment a chemical was measured inaccurately affecting the results. To resolve this, the experiment should have been repeated three times.