Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Please explain cellular respiration
Please explain cellular respiration
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Adrian Jackson
Mrs. Kasicky
Biology 1st
23 March 2014
Cellular Respiration
Do you know how you are able to run long distances or lift heavy things? One of the reasons is cellular respiration. Cellular respiration is how your body breaks down the food you’ve eaten into adenosine triphosphate also known as ATP. ATP is the bodies energy its in every cell in the human body. We don’t always need cellular respiration so it is sometimes anaerobic. For example, when we are sleeping or just watching television. When you are doing activities that are intense like lifting weights or running, your cellular respiration becomes aerobic which means you are also using more ATP. Cellular respiration is important in modern science because if we did not know about it, we wouldn’t know how we are able to make ATP when we are doing simple task like that are aerobic or anaerobic.
Scientist have been researching cellular respiration “They discovered that when Stat 3 protein was missing, cells consumed less oxygen and produced less ATP, the key molecular form of cellular energy,” which means that the ene...
Cellular respiration is the process by which energy is harvested involving the oxidation of organic compounds to extract energy from chemical bonds (Raven & Johnson, 2014). There are two types of cellular respiration which include anaerobic respiration, which can be done without oxygen, and aerobic respiration, which requires oxygen. The purpose of this experiment is to determine whether Phaseolus lunatus, also known as dormant seeds or lima beans, respire. You will compare the results of the respiration rate of the dormant seeds, and the Pisum sativum, or garden peas. In this experiment, you will use two constants which will be the temperature of the water and the time each set of peas are soaked and recorded. Using these constants will help
The ATP is used for many cell functions including transport work moving substances across cell membranes. It is also used for mechanical work, supplying the energy needed for muscle contraction. It supplies energy not only to heart muscle (for blood circulation) and skeletal muscle (such as for gross body movement), but also to the chromosomes and flagella to enable them to carry out their many functions. A major role of ATP is in chemical work, supplying the needed energy to synthesize the multi-thousands of types of macromolecules that the cell needs to exist. ATP is also used as an on-off switch both to control chemical reactions and to send messages.
This lab was done to determine the relationship of gas production to respiration rate. The lab was done with dormant pea seeds and germinating pea seeds. It was done to test the effect of temperature on the rate of cellular respiration in ungerminated versus germinating seeds. We had to determine the change in gas volume in respirometers. This was done to determine how much oxygen was consumed during the experiment. The respirometers contained either germinating, or non-germinating pea seeds. I think that the germinating seeds will have a higher oxygen consumption rate in a room temperature water bath than the non-germinating seeds. My reason for this hypothesis is that a dormant seed would not have to go through respiration because it is not a plant yet. A germinating seed would consume more oxygen because it is growing, and therefore would need to consume oxygen by going through the process of cellular respiration.
Cellular respiration is a chemical reaction used to create energy for all cells. The chemical formula for cellular respiration is glucose(sugar)+Oxygen=Carbon Dioxide+Water+ATP(energy) or C6H12+6O2=6CO2+6H2O+ energy. So what it is is sugar and
Cellular respiration and photosynthesis are important in the cycle of energy to withstand life as we define it. Cellular respiration and photosynthesis have several stages in where the making of energy occurs, and have diverse relationships with organelles within the eukaryotic cell. These processes are central in how life has evolved.
In some way, shape, or form energy is one of the several reasons why there is an existence of life on earth. Cellular respiration and Photosynthesis form a cycle of that energy and matter to support the daily functions that allow organisms to live. Photosynthesis is often seen to be one of the most important life processes on Earth. Photosynthesis is a process by which plants use the energy of sunlight to convert carbon dioxide and water into glucose so other organisms can use it as food and energy. It changes light energy into chemical energy and releases oxygen. This way organisms can stay alive and have the energy to function. Chlorophyll is an organelle generally found in plants, it generates oxygen as a result too. As you can see without
These results make sense because the heart beats faster in order to keep the body’s cells well equipped with oxygen. For one to continue exercising for long amounts of time, cells need to create ATP in order to use energy. Oxygen must be present for the process of creating ATP, which not only explains why higher respiratory rates occur during exercise but also faster heart rates. When the heart is beating rapidly, it is distributes oxygenated blood as fast as the body n...
for a cell to function as part of cellular respiration. ATP is needed to power
Aerobic requires oxygen and takes place inside the mitochondria of iving cells. The energy is stored as adenosine triphosphate (ATP) Aerobic respiration produces 2890KJ/Mole or 38ATP. This is much more than anaerobic. The
Our metabolism, “the totality of an organism’s chemical reactions”, manages energy usage and production of cells. We use energy constantly and our metabolism breaks down food through complex chemical reactions into energy our cells
Cells are the basic building blocks of all living things. The human body is composed of trillions of cells. They provide structure for the body, take in nutrients from food, convert those nutrients into energy, and carry out specialized functions. But it also contains highly organized physical structures which are called intracellular organelles. These organelles are important for cellular function. For instance Mitochondria is the one of most important organelle of the cell. Without Mitochondria more than 95% of the cell’s energy, which release from nutrients would cease immediately [Guyton et al. 2007].
According to our text, Campbell Essential Biology with Physiology, 2010, pg. 78. 94. Cellular respiration is stated as “The aerobic harvesting of energy from food molecules; the energy-releasing chemical breakdown of food molecules, such as glucose, and the storage of potential energy in a form that cells can use to perform work; involves glycolysis, the citric acid cycle, the electron transport chain, and chemiosmosis”.
Aerobic exercise involves improving the cardiovascular system. It increases the efficiency with which the body is able to utilize oxygen (Dintiman, Stone, Pennington, & Davis, 1984). In other words, aerobic exercise means that continuous and large amounts of oxygen are needed to get in order to generate the amount of energy needed to complete the workout. The most common type of aerobic exercise is long-distance running, or jogging. While running, the body requires large amounts of energy in order for the body to sustain energy. “During prolonged exercise, most of the energy is aerobic, derived from the oxidation of carbohydrates and fats” (Getchell, 1976).
Respiration is the process of obtaining oxygen from the external environment and eliminating carbon dioxide. There are two phases of respiration; external respiration and internal respiration, and also three major respiratory structures: gills, integumentary exchange areas and lungs. External respiration takes place in the capillaries of gills or lungs, though in some vertebrates, such as amphibians, the skin is also utilized, which are the integumentary exchange areas. Internal respiration is the cellular use of carbohydrates, which then produces carbon dioxide, water and releases energy. This is created by a complex chain of chemical reactions called cellular respiration with the help of respiratory enzymes found in the protoplasm of all cells. The function of the respiratory system is to provide oxygen to the blood and remove carbon dioxide and other waste gases.
When humans consume plants, the carbohydrates, lipids, and proteins are broken down through two forms of cellular respiration. The two processes of cellular respiration displayed in humans are anaerobic and aerobic. The deciding process used depends on the presence of oxygen. Cellular respiration converts the material into a useable energy called ATP. ATP is the energy form that cells can use to perform their various functions, and it can also be stored for later use.