Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Fibonacci sequence speach
Fibonacci sequence speach
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Recommended: Fibonacci sequence speach
The Fibonacci sequence and its application to real world problems
1. Introduction
Fibonacci sequences are set of numbers based on the rule that each number is equal to the sum of the preceding two numbers; it can be also evaluated by the general formula where F(n) represents the n-th Fibonacci number (n is called an index), the sum of values in pascal`s triangle diagonal also demonstrates Fibonacci sequences. The presentation and report are designed to discover the application of Fibonacci sequences in daily life. The famous Fibonacci sequence has captivated mathematicians, artists, designers, and scientists for centuries therefore it is suggested as an important fundamental characteristic in real life.
2. Fibonacci in real life
Fibonacci sequences can be found in
…show more content…
This is a spiral (the Fibonacci Spiral). A similar curve to this occurs in nature as the shape of a snail shell or some sea shells. Some examples are Spiral Galaxies; Hurricanes; Cochlea of the inner ear; Horns of certain goats; Spider's webs. Figure 5. Shells. Source: “io9"
Summary
The report covered the main applications of Fibonacci sequences in life. Not only sum of consequent values may define Fibonacci sequences, there are some more ways such general formula and pascal`s triangle. Fibonacci sequneces can be found almost everywhere. It may be found in nature, financial market and DNA. Furthermore, Fibonacci can be drawn in rectangle or shell spiral.
Evaluation
During my investigations, I was intended to find out different ways of finding Fibonacci numbers. I realized that Fibonacci numbers are important in different fields. I considered some aspects such as nature, finance and the Fibonacci rectangle. And, I was surprised how often Fibonacci numbers are used in arrangement of the leaves and petals and totally unexpected that breeding of rabbits connects with Fibonacci numbers
a spiral, like the markers at the Pet Sematary. Later, when Louis is home alone,
Polo, S. (Writer). (2012, January 9). Doodling in Math Class: Spirals, Fibonacci, and Being a Plant [2 of 3] [Video]. Retrieved October 2, 2013, from http://www.youtube.com/watch?v=lOIP_Z_-0Hs
Pascal’s Triangle falls into many areas of mathematics, such as number theory, combinatorics and algebra. Throughout this paper, I will mostly be discussing how combinatorics are related to Pascal’s Triangle.
Named after the Polish mathematician, Waclaw Sierpinski, the Sierpinski Triangle has been the topic of much study since Sierpinski first discovered it in the early twentieth century. Although it appears simple, the Sierpinski Triangle is actually a complex and intriguing fractal. Fractals have been studied since 1905, when the Mandelbrot Set was discovered, and since then have been used in many ways. One important aspect of fractals is their self-similarity, the idea that if you zoom in on any patch of the fractal, you will see an image that is similar to the original. Because of this, fractals are infinitely detailed and have many interesting properties. Fractals also have a practical use: they can be used to measure the length of coastlines. Because fractals are broken into infinitely small, similar pieces, they prove useful when measuring the length of irregularly shaped objects. Fractals also make beautiful art.
Marketing is a system of business activates designed to plan, price, promote and distribute want-satisfying products, services and ideas to customers in order to achieve business objectives. Consumer law protects consumer’s rights in the marketplace as well as fair trading, competition and accurate information. On the other hand, ethical aspects of marketing are about making marketing decisions that are morally right. However, consumer law and ethical aspects of marketing have a lot of advantages and disadvantages in the marketplace, which impacts business 's sales and growth like it happened to: Harvey Norman, Nurofen, apple, etc.
Blaise Pascal has contributed to the field of mathematics in countless ways imaginable. His focal contribution to mathematics is the Pascal Triangle. Made to show binomial coefficients, it was probably found by mathematicians in Greece and India but they never received the credit. To build the triangle you put a 1 at the top and then continue placing numbers below it in a triangular pattern. Each number is the two numbers above it added together (except for the numbers on the edges which are all ‘1’). There are patterns within the triangle such as odds and evens, horizontal sums, exponents of 11, squares, Fibonacci sequence, and the triangle is symmetrical. The many uses of Pascal’s triangles range from probability (heads and tails), combinations, and there is a formula for working out any missing value in the Pascal Triangle: . It can also be used to find coefficients in binomial expressions (put citation). Another staple of Pascal’s contributions to projective geometry is a proof called Pascal’s theore...
‘Nature abounds with example of mathematical concepts’ (Pappas, 2011, .107). It is interesting how much we see this now we know, regarding the Fibonacci Sequence, which is number pattern where the first number added to itself creates a new number, then adding that previous number to the new number and so on. You will notice how in nature this sequence always adds up to a Fibonacci number, but alas this is no coincidence it is a way in which plants can pack in the most seeds in a small space creating the most efficient way to receive sunlight and catches the most
When I was a Child, I have never stopped wondering what it would be to fly in the sky. I had tried to jump from sofa or bed with an opened umbrella in my hand,and imagined myself as a flying bird. As I grow up, those wonderful fantasy become faded in my brain. I still like flying, and I had experience something like helicopter tour, but never a real fly. I always have the thoughts to explore life, to experience
Fibonacci numbers are numbers in the Fibonacci sequence. In this paper, you will find out what Fibonacci numbers are related to. You will also find out how Fibonacci numbers are everywhere in the world. Though Fibonacci numbers are found in mathematical subjects, they are also found in other concepts.
A rectangle is a very common shape. There are rectangles everywhere, and some of the dimensions of these rectangles are more impressive to look at then others. The reason for this, is that the rectangles that are pleasing to look at, are in the golden ratio. The Golden Ratio is one of the most mysterious and magnificent numbers/ratios in all of math. The Golden Ratio appears almost everywhere you look, yet not everyone has ever heard about it. The Golden Ratio is a special number that is equal to 1.618. An American mathematician named Mark Barr, presented the ratio using the Greek symbol “Φ”. It has been discovered in many places, such as art, architectures, humans, and plants. The Golden Ratio, also known as Phi, was used by ancient mathematicians in Egypt, about 3 thousand years ago. It is extraordinary that one simple ratio has affected and designed most of the world. In math, the golden ratio is when two quantities ratio is same as the ratio of their sum to the larger of the two quantities. The Golden Ratio is also know as the Golden Rectangle. In a Golden Rectangle, you can take out a square and then a smaller version of the same rectangle will remain. You can continue doing this, and a spiral will eventually appear. The Golden Rectangle is a very important and unique shape in math. Ancient artists, mathematicians, and architects thought that this ratio was the most pleasing ratio to look at. In the designing of buildings, sculptures or paintings, artists would make sure they used this ratio. There are so many components and interesting things about the Golden Ratio, and in the following essay it will cover the occurrences of the ratio in the world, the relationships, applications, and the construction of the ratio. (add ...
Many types of problems are naturally described by recurrence relations said difference equations [2, 3], which usually
The prominence of numeracy is extremely evident in daily life and as teachers it is important to provide quality assistance to students with regards to the development of a child's numeracy skills. High-level numeracy ability does not exclusively signify an extensive view of complex mathematics, its meaning refers to using constructive mathematical ideas to “...make sense of the world.” (NSW Government, 2011). A high-level of numeracy is evident in our abilities to effectively draw upon mathematical ideas and critically evaluate it's use in real-life situations, such as finances, time management, building construction and food preparation, just to name a few (NSW Government, 2011). Effective teachings of numeracy in the 21st century has become a major topic of debate in recent years. The debate usually streams from parents desires for their child to succeed in school and not fall behind. Regardless of socio-economic background, parents want success for their children to prepare them for life in society and work (Groundwater-Smith, 2009). A student who only presents an extremely basic understanding of numeracy, such as small number counting and limited spatial and time awareness, is at risk of falling behind in the increasingly competitive and technologically focused job market of the 21st Century (Huetinck & Munshin, 2008). In the last decade, the Australian curriculum has witness an influx of new digital tools to assist mathematical teaching and learning. The common calculator, which is becoming increasing cheap and readily available, and its usage within the primary school curriculum is often put at the forefront of this debate (Groves, 1994). The argument against the usage of the calculator suggests that it makes students lazy ...
The history of math has become an important study, from ancient to modern times it has been fundamental to advances in science, engineering, and philosophy. Mathematics started with counting. In Babylonia mathematics developed from 2000B.C. A place value notation system had evolved over a lengthy time with a number base of 60. Number problems were studied from at least 1700B.C. Systems of linear equations were studied in the context of solving number problems.
The Fibonacci Series was discovered around 1200 A.D. Leonardo Fibonacci discovered the unusual properties of the numeric series, that’s how it was named. It is not proven that Fibonacci even noticed the connection between the Golden Ratio meaning and Phi.
As mathematics has progressed, more and more relationships have ... ... middle of paper ... ... that fit those rules, which includes inventing additional rules and finding new connections between old rules. In conclusion, the nature of mathematics is very unique and as we have seen in can we applied everywhere in world. For example how do our street light work with mathematical instructions? Our daily life is full of mathematics, which also has many connections to nature.