Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Glucose homeostasis
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Recommended: Glucose homeostasis
Introduction Glucose is one of important source in the body because it is the primary source of energy for all body functions and is indeed the only form of energy which can used by the brain and central nervous systems. It is necessary for blood glucose levels to be regulated and this is achieved through homeostasis; however, low blood glucose or high blood glucose can lead to serious problems overtime. Thus, maintaining normal blood glucose is greatly decreases the risk of further complications due to diabetes. In this paper, I will explain how the glucoses move across the cell membrane including the difference between simple and facilitated diffusion. Glucose cannot diffuse directly into cells, but enter by one of two transport mechanism: simple diffusion (active transport) and facilitated diffusion. The glucose is transported by simple transport from the gut into intestinal epithelial cells, but by facilitated diffusion across the membrane of red blood cells. Active transport moves from low concentration to higher concentration and it requires some form of chemical energy. ...
...s a component monomer of starch. As a monomer as opposed to a polymer, it is much smaller and would thus be able to cross the plasma membrane. However, glucose is a larger solute than the component ions of salt, thus meaning that simple diffusion would not be sufficient. Instead, facilitated diffusion would be needed to transport the glucose. However, in the dialysis tubing, there is no facilitated transport like there is for the plasma membrane. Thus, the glucose may pass through the dialysis tubing, but it would not be due to transport, but the artificial enlargement of the passages in the dialysis tubing. Water would move freely inside and outside of the cell, however, because there is a greater solute concentration inside the cell, the water would diffuse through osmosis into the cell model, increasing the final mass of the dialysis tubing and causing cytolysis.
Would you expect glycogen to accumulate in the muscle of this patient? Why or why not? (5 points)
Our body obtains the energy by digesting the carbohydrates into glucose. Volumes of glucose are required by the body to create ATP. ATP is short for 'Adenosine Triphosphate ' and is an energy carrier. When we consume too many carbohydrates our body produces a lot of glucose and as a result blood glucose levels rise and sometimes they may rise over the normal range of blood glucose concentration. To bring it back within the healthy range, the homeostatic system of blood glucose regulation is used. The blood flows through the pancreas where the beta cells, receptors, detect the high blood glucose level. To counteract this stimuli beta cells alert the control centre, which are also the beta cells located in the islets of Langerhans in the pancreas. The secretion of insulin has to be done quickly but can only be carried out when insulin gene is switched on. Turning on the insulin gene switch can take 30 minutes to an hour therefore, the production of insulin by beta cells are done in advance and are packaged in vesicles right until blood glucose rises. Glucose comes into the beta cell to trigger the vesicle that contains the insulin to move towards the plasma membrane and fuse. This releases the insulin into the bloodstream where they are distributed throughout the body and only affect specific target cells. The receptor, a protein, on the target cell’s plasma membrane recognises and connects
Weighing too much is a matter of energy balance, a matter of calories going in verses calories going out, right? Maybe not. New research and new thinking in nutrition has started shifting this idea of energy balance to a view centered on food as a whole. It may be that getting rid of those pounds does not require hours of pounding on a treadmill as much as it requires rethinking what you eat.
Active transport requires the use of energy because substances are moved against/up a concentration gradient or across a partially permeable membrane. On the other hand, passive transport moves molecules down the concentration gradient and does not require cellular energy. For example, osmosis which is the movement of water across the membrane would be considered a passive transport because the molecules, or in this case water move easy and freely.
Cytosolic β-Glucosidase (hCBG) is a xenobiotic-metabolizing enzyme that hydrolyses certain flavonoid glucosides. This type of enzymes play a role in the metabolic detoxification, with a series of enzymatic reactions that neutralize and solubilize toxins, and then transport them to secretory organs. Flavonoid glusocides is a family of molecules in which a sugar is bound to another functional group by a glycosidic bond, and play numerous roles in living organisms, mainly in plants.
Activity 3: Investigating Osmosis and Diffusion Through Nonliving Membranes. In this activity, through the use of dialysis sacs and varying concentrations of solutions, the movement of water and solutes will be observed through a semipermeable membrane. The gradients at which the solutes NaCl and glucose diffuse is unproportional to any other molecule, therefore they will proceed down their own gradients. However, the same is not true for water, whose concentration gradient is affected by solute ...
When a cell membrane is said to be selectively permeable, it means that the cell membrane controls what substances pass in and out through the membrane. This characteristic of cell membranes plays a great role in passive transport. Passive transport is the movement of substances across the cell membrane without any input of energy by the cell. The energy for passive transport comes entirely from kinetic energy that the molecules have. The simplest type of passive transport is diffusion, which is the movement of molecules from an area of high concentration to an area of lower concentration. Diffusion
In order for the body to maintain homeostatic levels of energy, blood glucose regulation is essential. Glucose is one of the body’s principal fuels. It is an energy-rich monosaccharide sugar that is broken down in our cells to produce adenosine triphosphate. In the small intestine, glucose is absorbed into the blood and travels to the liver via the hepatic portal vein. The hepatocytes absorb much of the glucose and convert it into glycogen, an insoluble polymer of glucose. Glycogen, which is stored in the liver and skeletal muscles, can easily be reconverted into glucose when blood-glucose levels fall. All of the body’s cells need to make energy but most can use other fuels such as lipids. Neurons; however, rely almost exclusively on glucose for their energy. This is why the maintenance of blood-glucose levels is essential for the proper functioning of the nervous system.
Diabetes refers to a set of several different diseases. It is a serious health problem throughout the world and fourth leading cause of death by disease in the country. All types of diabetes result in too much sugar, or glucos in the blood. To understand why this happens it would helpful if we understand how the body usually works. When we eat, our body breaks down the food into simpler forms such as glucose. The glucose goes into the bloodstream, where it then travels to all the cells in your body. The cells use the glucose for energy. Insulin, a hormone made by the pancreas, helps move the glucose from bloodstream to the cells. The pathophysiology of diabetes mellitus further explains the concept on how this disease works. Pancreas plays an important role of the metabolism of glucose by means of secreting the hormones insulin and glucagon. These hormones where then secreted by Islets of Langerhans directly to the blood. Inadequate secretion of insulin results on impaired metabolism of glucose, carbohydrates, proteins and fats which then result to hyperglycemia and glycosuria. Hyperglycemia is the most frequently observed sign of diabetes and is considered the etiologic source of diabetic complications both in the body and in the eye. On the other hand, glucagon is the hormone that opposes the act of insulin. It is secreted when blood glucose levels fall.
Glucose is the primary source of energy for the cells and consequently is necessary for all cellular functions that require energy. Facilitated diffusion plays a significant role in the management of concentrations of glucose, both intracellular and extracellular, providing a balance of glucose in the cells that when poorly utilized upsets the body’s homeostasis.
Blood glucose levels are the measurement of glucose in an individual’s blood. This is important because glucose is the body’s main source of fuel and the brains only source of fuel. Without energy from glucose the cells would die. Glucose homeostasis is primarily controlled in the liver, muscle, and fat where it stored as glycogen. The pancreas is also a significant organ that deals with glucose. The pancreas helps regulate blood glucose levels. Alpha-islet and beta-islet pancreatic cells measure blood glucose levels and they also regulate hormone release. Alpha cells produce glucagon and beta cells produce insulin. The body releases insulin in response to elevated blood glucose levels to allow the glucose inside of cells and
Carbohydrates are biomolecules that consist of a chain or ring of carbon atoms attached to hydrogen and oxygen atoms. The simplest formula for carbohydrates is (CH2O)n. Carbohydrates are important to organisms for a variety of reasons. They are used to form the structural components of the cell, aid in energy storage, and serve as intermediary compounds for more complex molecules. Carbohydrates are classified as either monosaccharides, disaccharides, or polysaccharides. Both monosaccharides and disaccharides dissolve easily in water. Carbohydrates are produced in plants through the process of photosynthesis and animals obtain these carbohydrates by eating the plants. ("BIO 1510 Laboratory Manual," 2016)
We are all familiar with sugar. It is sweet, delicious, and addictive; yet only a few of us know that it is deadly. When it comes to sugar, it seems like most people are in the mind frame knowing that it could be bad for our health, but only a few are really taking the moderate amounts. In fact, as a whole population, each and everyone of us are still eating about 500 extra calories per day from sugar. Yes, that seems like an exaggerated number judging from the tiny sweet crystals we sprinkle on our coffee, but it is not. Sugar is not only present in the form of sweets and flavourings, it is hidden in all the processed foods we eat. We have heard about the dangers of eating too much fat or salt, but we know very little about the harmful effects of consuming too much sugar. There still isn’t any warnings about sugar on our food labels, nor has there been any broadcasts on the serious damages it could do to our health. It has come to my concern during my research that few