Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
A method of investigating electromagnets
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Recommended: A method of investigating electromagnets
1. What is an electromagnet?
An electromagnet is a magnet that is created using an electric current, created by electricity. Since electricity can be turned on and off, so can an electromagnet. It can even be weakened or strengthened by decreasing or increasing the current.
Electromagnets are created by having an iron core wound with a conductor carrying current. The strength of the electromagnet depends upon the amount of current passing through the conductor. Also the current can be easily stopped and started to form an electromagnet and de-energize respectively as per the need of the work to be performed.
Reference list to question 1 http://study.com/academy/lesson/what-is-an-electromagnet-definition-uses-parts.html http://www.brighthubengineering.com/commercial-electrical-applications/65361-how-electromagnetism-changed-our-world/
…show more content…
Give 3 uses of electromagnet and describe how each one works.
Large crane magnets - the electromagnet on the end of the crane is turned on and turns into a magnet picking and dropping metals. When it is turned off the electromagnet just turns into a normal metal
Magnetic Levitation Trains - these are high-speed trains that have powerful electromagnets to lift, guide and move them. The electromagnets lift the train to a few millimeters above the tracks. This greatly reduces friction, which is one of the main hindrances to achieving speed in any kind of transportation.
Electromagnetic Locks - A popular application of electromagnets is in security systems. Electromagnetic locks, also known as maglocks, consist of a coil of wire wrapped around a metal core. When electric current passes through the coil, the core becomes an electromagnet. It attracts a metal plate on the same side of the door. This is called an 'armature plate'. This results in 'locking' of the door. Maglocks are available in two types (depending upon mechanism of operation). These are called 'fail safe' and 'fail
In a DC motor, the armature consists of any number of windings, each one an electromagnet. The armature is immersed in a directional external magnetic field. This external field does not move, and can come from permanent magnets or electromagnets.
Pickups work with a bar magnet which is rapped with turns of wire. We know that magnets with coil can transform electrical energy into motion. Also motion can be turn again into electrical energy. On a pickup, the vibration in the magnets is produces by the vibration that the ferromagnetic strings make. Then at the same time in the coil there is a vibrating current.
The Effect of the Number of Coils on an Electromagnet On Its Strength Aim: - To establish whether a variation in the number of coils will affect an electromagnet's strength. Scientific Knowledge -. The concept of electromagnets is fairly simple. An iron nail wrapped in a series of coils of insulated wire and then connected to a battery, will enable the nail to pick up paper clips. This is because the current emitted from the battery to the coils magnetizes the nail to the surface.
Magnetism is very useful in our daily life. A magnetic field is a mathematical description of the magnetic influence of electric currents and magnetic materials. In addition, magnetic field is a region which a magnetic material experiences a force as the result of the presence of a magnet or a current carrying conductor. Current carrying conductors also known as wire. As we know there have north pole and south pole of a magnet. If same pole of magnet approaches each other, there will repel each other. In contrast, if different pole of magnet approaches each other, they will attract. These are same with the electric charge, if same charge it will repel, different charge it will attract. Although magnets and magnetism were known much earlier, the study of magnetic fields began in 1269 when French scholar Petrus Peregrinus de Maricourt mapped out the magnetic field on the surface of a spherical magnet using iron needles [search from Wikipedia]. Noting that the resulting field lines crossed at two points he named those points 'poles' in analogy to Earth's poles. Each magnet has its own magnetic field which experiences a force as the result of the presence of a magnet and magnetic field has made up of magnetic field lines. The properties of magnetic field lines is it begin at the north pole and end at the south pole. The north pole always flow out while south pole always flow in. The closer the magnetic field lines, the strength of magnetic field increases. Furthermore, these line cannot cross each other. Ferromagnetism is the basic mechanism by which certain materials (such as iron) form permanent magnets, or are attracted to magnets. Ferromagnetic materials...
The Tesla coil is an electrical circuit made of the resonant transformer and developed by the famous inventor Nikola Tesla around 1891 as a power supply for his "System of Electric Lighting". The project mentioned above was designed to produce a current that alternates with high frequency, low-current and high voltage. Tesla experimented with a number of different configurations consisting of two, or sometimes three, coupled resonant electric circuits.
A magnet can be made from different materials, but loadstone is the natural form. The most important part of magnetism to make electric motors work is: A magnet has two different ends, or poles a north and a south pole. These poles behave like electric charges, like poles repel and unlike poles attract although magnets have no affect on still charges. The relationship between electricity and magnetism is that each phenomenon is that each generates a field. Electric fields can be pictured by thinking in terms of gravitational forces. Where, any two objects have a gravitational force one another. Any two electric charges have a force between them (either repelling, or attracting depending on polarity). These electric fiel...
The Tesla coil was made by Nikola Tesla in 1891. Tesla was a scientist that believed the ground and Earth were better conductors than metals. Therefore, he created the Tesla Coil which was a device that could send electricity to appliances without cords or wires. This device was able to power lights or other things that required electricity from several feet away. The Tesla coil looks like a mushroom with a metal top and copper wire coiled around the center of it. A Tesla Coil if tweaked can make electrical currents go through your body, make electron winds, or shoot lightning bolts. Altogether the Coil was made so the world wouldn't have wires everywhere. Imagine a world with no wires, there wouldn’t be things you could trip over and no telephone
The phenomenon called electromagnetic induction was first noticed and investigated by Michael Faraday, in 1831. Electromagnetic induction is the production of an electromotive force (emf) in a conductor as a result of a changing magnetic field about the conductor and is a very important concept. Faraday discovered that, whenever the magnetic field about an electromagnet was made to grow and collapse by closing and opening the electric circuit of which it was a part, an electric current could be detected in a separate conductor nearby. Faraday also investigated the possibility that a current could be produced by a magnetic field being placed near a coiled wire. Just placing the magnet near the wire could not produce a current. Faraday discovered that a current could be produced in this situation only if the magnet had some velocity. The magnet could be moved in either a positive or negative direction but had to be in motion to produce any current in the wire. The current in the coil is called an induced current, because the current is brought about (or “induced”) by a changing magnetic field (Cutnell and Johnson 705). The induced current is sustained by an emf. Since a source of emf is always needed to produce a current, the coil itself behaves as if it were a source of emf. The emf is known as an induced emf. Thus, a changing magnetic field induces an emf in the coil, and the emf leads to an induced current (705). He also found that moving a conductor near a stationary permanent magnet caused a current to flow in the wire as long as it was moving as in the magnet and coiled wire set-up.
Usually magnetic fields are created when an electric current is applied to a set of conductive wires wound together (Dixon, 2001). Magnetic fields can also be created using Permanent Magnets (PM). Electrical motors can also work as electrical generators (Correla, 1986). Electrical generators are devices capable of converting mechanical energy into electrical energy. An example would be a wind turbine which works as an electrical generator.
Humans these days take electricity for granted. We don’t truly understand what life was like without it. Most young adults will tell you their life does not depend on electricity, but they aren’t fooling anyone. They all know that their life depends on electricity; whether it’s television, their phone, Google, or the lights in their house. We need to stop taking those things for granted and give credit where credit is due. That is why I chose to write about the scientists who contributed to the discovery of electricity, which then helped modern scientists fuel the electricity phenomenons we now have today.
The Earth’s magnetic field is a major component to exploring the earth. The north and the south poles have always been a guide for travelers. Using compasses, the direction of the north pole and the south pole has always been provided by the magnetic force of the magnetic field. What many people do not know though is the earth’s magnetic field provides way more than that. The magnetic field, also known as the magnetosphere, protects us from all kinds of harmful substances. Some of these substances include solar wind and harmful radiation from the sun. The magnetosphere also protects the atmosphere, which protects us.
In 1831, using his "induction ring", Faraday made one of his greatest discoveries - electromagnetic induction: the "induction" or generation of electricity in a wire by means of the electromagnetic effect of a current in another wire. The induction ring was the first electric transformer. In a second series of experiments in September he discovered magneto-electric induction: the production of a steady electric current. To do this, Faraday attached two wires through a sliding contact to a copper disc. By rotating the disc between the poles of a horseshoe magnet he obtained a continuous direct current. This was the first generator. From his experiments came devices that led to the modern electric motor, generator and transformer.
Magnets are stones that produce magnetic fields. The magnetic field is invisible, but is responsible for the most noticeable aspect of a magnet: the attraction of a metal object or the repulsion of another magnet. Magnets are used in common everyday household items: credit cards, TVs, speakers, motors, and compasses. A magnets strength is measured by its magnetic moment. (“Magnetism”)
Throughout the past century, investigations of quantum and particle physics phenomena have proven to show the most significant concepts and ideas in the physical and sub-atomic world. However, the discoveries yet to be made are endless. One of the most fascinating concepts in the sub-atomic universe is the idea of spintronics. Spintronics is the quantum study of the independent angular momentum (not to be confused with the orbital angular momentum of the electron) of a particle, typically that of an electron (Introduction). An electron is a fundamental particle, with a negative charge, and is independently studied in the process of spintronic devices. The spin angular momentum of electrons is ±½ћ. Devices that use the properties
Temperature has a large effect on particles. Heat makes particles energized causing them to spread out and bounce around. Inversely the cold causes particles to clump together and become denser. These changes greatly F magnetic the state of substances and can also influence the strength of magnetic fields. This is because it can alter the flow of electrons through the magnet.