Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Conservation of energy essay
Physics behind magnets
Faraday's law of induction and applications
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Recommended: Conservation of energy essay
In this experiment, we are able to study about magnetism and magnetic fields.
Magnetism is very useful in our daily life. A magnetic field is a mathematical description of the magnetic influence of electric currents and magnetic materials. In addition, magnetic field is a region which a magnetic material experiences a force as the result of the presence of a magnet or a current carrying conductor. Current carrying conductors also known as wire. As we know there have north pole and south pole of a magnet. If same pole of magnet approaches each other, there will repel each other. In contrast, if different pole of magnet approaches each other, they will attract. These are same with the electric charge, if same charge it will repel, different charge it will attract. Although magnets and magnetism were known much earlier, the study of magnetic fields began in 1269 when French scholar Petrus Peregrinus de Maricourt mapped out the magnetic field on the surface of a spherical magnet using iron needles [search from Wikipedia]. Noting that the resulting field lines crossed at two points he named those points 'poles' in analogy to Earth's poles. Each magnet has its own magnetic field which experiences a force as the result of the presence of a magnet and magnetic field has made up of magnetic field lines. The properties of magnetic field lines is it begin at the north pole and end at the south pole. The north pole always flow out while south pole always flow in. The closer the magnetic field lines, the strength of magnetic field increases. Furthermore, these line cannot cross each other. Ferromagnetism is the basic mechanism by which certain materials (such as iron) form permanent magnets, or are attracted to magnets. Ferromagnetic materials...
... middle of paper ...
...nduced in a conductor moving at right angles to and cutting across a magnetic flux. On the other hand, magnet is a useful in our daily life such as it can hold some documents and use to move an object. For example, a bicycle dynamo is a small generator fitted by bicycle to provide electricity for the lights bulb, it using the principle of electromagnetism. There are 2 law of electromagnetic induction such as Faraday’s Law and Lenz’s Law. In the other hand, Lenz’s Law state that induced current always flows in such a direction so as to opposite the change causing it. When north pole is approach the solenoid, the front part of solenoid will creates a north pole to produce a force of repulsion to oppose the change of motion. And the direction of current in the solenoid can determined by Right-hand Grip Rule. Lenz’s Law also is a form of law of conservation of energy.
In the twentieth century the medical field has seen many changes. One way that hospitals and nursing specifically has changed and implemented the changes is by pursuing accreditations, awards, and recognitions. The purpose of this paper is to understand Magnet Status and the change required by hospitals to achieve it.
The effect of Magnet designation in health care institute. The health care industry is working hard more than ever to get excellence in patient care. The purpose of this paper is to discuss the importance and influence of Magnet designation on health care.
The Magnet Recognition Program was initially developed to attract and maintain nursing staff. According to American Nurses Credentialing Center’s (ANCC) web site, the program “was developed by the ANCC to recognize health care organizations that provide nursing excellence. The program also provides a vehicle for disseminating successful nursing practices and strategies.” Nursing administration continues to have an integral role associated with the demonstration of excellence in achieving the highest honor of nursing distinction. The exploration of force one, quality of nursing leadership, continues to be the foundation of magnet recognition.
A direct current in a set of windings creates a polar magnetic field. A torque acts on the rotor due to its relation to the external magnetic field. Just as the magnetic field of the rotor becomes fully aligned with the external magnetic field, the direction of the current in the windings on the armature reverses, thereby reversing the polarity of the rotor's electromagnetic field. A torque is once again exerted on the rotor, and it continues spinning.
Electric guitars are devices that generate sound from a set of pickups that convert string vibration into electrical signals for amplification. The sound starts out as vibrations the musician creates while playing. These vibrations are picked up by the pickups of the guitar. What are pickups? Pickups are permanent magnets wrapped around in a coil. Since the strings are made with a special material called ferromagnetic, they interact with the magnetic fields in the pickups and force electrons to move in the loop. Moving electrons can generate a signal that can be read by the amplifier.
The History of Magnets and Electromagents Magnets and electromagnets have many uses, every electric motor,
Magnetic Field: The Earth has a superior magnetic field due to a core consisting of iron and nickel. Currently the rotation of the Earth and its Coriolis effect help to create this pull of the tides from the oceans. The northern lights or lurora Borealis can be seen at various times in a mystifying view of beauty.
The relationship between electricity and magnetism is that each phenomenon generates a field. Electric fields can be pictured by thinking in terms of gravitational forces. Where, any two objects have a gravitational force on one another. Any two electric charges have a force between them (either repelling, or attracting depending on polarity). These electric fields are vector forces, with size and direction at each point in space....
The force of a magnet is caused by the magnetic field around the magnet. A magnets gets its magnetic field from moving electric charges. Everything is made up of atoms in the world and atoms have electrons that orbit around them. They create a small magnetic field. The electrons move in different directions so they cancel themselves out, but if you get them going in the same direction
Faraday visualized a magnetic field as composed of many lines of induction, along which a small magnetic compass would point. The aggregate of the lines intersecting a given area is called the magnetic flux. Faraday attributed the electrical effects to a changing magnetic flux.
The Earth’s magnetic field is a major component to exploring the earth. The north and the south poles have always been a guide for travelers. Using compasses, the direction of the north pole and the south pole has always been provided by the magnetic force of the magnetic field. What many people do not know though is the earth’s magnetic field provides way more than that. The magnetic field, also known as the magnetosphere, protects us from all kinds of harmful substances. Some of these substances include solar wind and harmful radiation from the sun. The magnetosphere also protects the atmosphere, which protects us.
Magnets are stones that produce magnetic fields. The magnetic field is invisible, but is responsible for the most noticeable aspect of a magnet: the attraction of a metal object or the repulsion of another magnet. Magnets are used in common everyday household items: credit cards, TVs, speakers, motors, and compasses. A magnets strength is measured by its magnetic moment. (“Magnetism”)
Before understanding the physics principles, one must understand the physical design that induces them. A magnetic disk is a flat, circular, rigid sheet of aluminum coated with a layer of magnetic material (can be double sided). The material usually is a form of iron oxide with various other elements added. The disk rotates upon a central axis and a movable read/write head writes information along concentric tracks (circular paths traced out by motion of the disk) on it. Multiple disks can be stacked to store more information. Typically (1985) 11 disks with 22 surfaces, of which 20 are used (minus top/bottom), are manipulated to read/write data.
Electric currents produce magnetic fields, they can be as small as macroscopic currents in wires, or microscopic currents in atomic orbits caused by electrons. The magnetic field B is described in terms of force on a moving charge in the Lorentz force law. The relationship of magnetic field and charges leads to many practical applications. Magnetic field sources are dipolar in nature, with a north and south magnetic pole. The magnetic field SI unit is the Tesla, it can be seen in the magnetic part of the Lorentz force law F magnetic = qvB composed of (Newton x second)/(Coulomb x meter). The smaller magnetic field unit is the
A magnet has an invisible field that forces other objects to respond to its properties. This powerful force, which is referred to as the magnetic field, has particles called electrons that actively shift and move within the field. These electrons constantly revolve around the poles, thereby creating energy that attracts objects. Because of this, a magnet has the ability to draw objects towards itself. This ability, which is called magnetism, is caused by the force field that magnets create through its protons (positive charge) and electrons (negative charge).