As a source of energy, nuclear energy provides a safer alternative, for the production of energy for large-scale consumption. There are two different types of nuclear energy; nuclear fission and nuclear fusion. Nuclear fission is the process in which a nucleus spits into two or more smaller nuclei. Nuclear fusion is the process in which two nuclei fuse together to form a larger nuclei. Nuclear reactors can become unstable creating an uncontrollable nuclear reaction. The effects of this can be seen in Chernobyl. Reactors have been designed safer after this disaster. Nuclear fission is the process in which a nucleus spits into two or more smaller nuclei. Nuclear reactors use a controlled chain reaction to produce electricity. The rate at which the chain reaction occurs can be controlled by manipulating the amount of non-fissionable material present. Uranium-235 is the only naturally occurring isotope that undergoes fission. The energy released through nuclear fission is 20 million times more than the energy released burning fossil fuels. The critical mass is the maximum size a sample of uranium ore can reach. If the sample is larger then the critical mass it will start an uncontrolled reaction. 99.3% of uranium ore is made up of uranium-238 and 0.7% is uranium-235. Nuclear fusion is the process in which two nuclei fuse together to form a larger nuclei. Hydrogen atoms are usually used in fusion reactions. Fusion releases more energy than fission but can only occur when the nuclei are very hot. The temperature needed for fusion reactions is about 20,000,000°C. Fusion reactors are also called thermonuclear reactors because of the high temperatures. Fusion occurs in three stages; in the first stage two hydrogen nuclei join to form deute... ... middle of paper ... ...ts shut down to avoid damage. Nuclear reactors are designed so that earthquakes and other natural disasters will not damage the reactors. Nuclear power provides a safer alternative for the production of electricity for large scale consumption. The two different types of nuclear reactions are fission reactions and fusion reactions. Fission reactions are the process in which a nucleus splits, forming two smaller nuclei and fusion reactions are the process in which two nuclei fuse together forming a larger nuclei. Nuclear reactors use controlled nuclear reactions to produce electricity. Nuclear energy is a more efficient energy source than any other available energy sources. The Three Mile Island nuclear disaster brought about sweeping changes in many areas of nuclear safety. Nuclear reactors have been designed to automatically shut down in the case of an earthquake.
The reactor being shut down might have a huge affect on the community now but what if in a few
Physicists started to realize that stable nuclei can be converted to unstable nuclei. Through such process, they discovered that heavy nuclei can undergo nuclear fission. While testing, they added a neutron to an isotope of Uranium 235. This resulted Uranium 235 to become unstable and break down into Barium and Krypton, releasing two to three more neutrons. The breakdown of Uranium 235 is called “fission”.
All these effects were the cause of the discovery of nuclear fission and its properties. Nuclear Fusion Nuclear fusion is the process used by the sun and the stars in our solar system to produce their energy. Fusion involves smashing hydrogen atoms together at high velocities to form helium, and the matter is made into energy.
In a fusion, two atoms’ nuclei join to create a much heavier nucleus.1 The two atoms collide and together make a new atom while releasing neutrons in the form of energy. Imagine this as two cars in a head-on collision. When they collide, they stick together (not forming a new atom like in nuclear fusion, but let’s pretend,) and when they crash, some of the bumper flies off. The atoms collide and neutrons, like the bumper, fly off in the form of energy.
Nuclear energy must be a consideration for the future with the rapidly depleting supply of fossil fuels. This type of energy can be created through nuclear fission and nuclear fusion. Nuclear fission is the splitting of a heavy atom into two or more parts, releasing huge amounts of energy. The release of energy can be controlled and captured for generating electricity. Nuclear fusion involves bombarding hydrogen atoms together to form helium. In the long run, nuclear fusion has greater potential than fission.
This is done to make sure the risk of meltdown is minimized. The nuclear waste is so toxic that every precaution is taken to make sure of is disposed of safely to keep it from poisoning the environment. In an article titled 11 Facts about Nuclear Energy we find out that, “Every 18 to 24 months a power plant must shut down to remove its spent uranium fuel.” Nuclear Power plants can have a meltdown that releases extremely toxic waste into the environment. The reason some people are opposed to nuclear power plants, some estimates say that there is a 50% chance of a meltdown in a U.S. reactor in the next 20 years (“55 Interesting Facts about. Nuclear Energy”). These meltdowns can be small or large, both of them take a lot of money and time. The Three Mile Island disaster alone took 975 million dollars and 14 years to clean up (“55 Interesting Facts about. Nuclear
According to Merriam-Webster, nuclear fission is defined as “the splitting of an atomic nucleus resulting in the release of large amounts of energy” (Nuclear Fission). In the book Remembering the Manhattan Project: Perspectives on the Making of the Atomic Bomb and Its Legacy, Richard Rhodes, an American journalist and historian, states that fission was essentially discovered by accident. On December 21, 1938, German physicists, Otto Hahn and Fritz Strassman, were performing an experiment in which they bombarded uranium atoms with neutrons (Rhodes 17). They saw that this procedure created mutated atoms that had strange characteristics. Hahn and Strassman found that the neutrons split the nuclei of the uranium in half producing radioactive barium and krypton (Rhodes 18). Rhodes explains that the physicists observed that the reaction was extremely exothermic, producing about ten times the energy needed for the fission to occur. After publishing their findings, physicists all over the world recreated the experiment. After conducting his own fission experiment, Enrico Fermi, an Italian physicist at Colombia University, said, “A little bomb like that and it would all disappear” (qtd. Rhodes 19). Many of the world’s physicists came to the same conclusion; this reaction could be used to develop an atomic weapon. According to Rhodes, this discovery made the development of atomic weaponry seem essential to many countries because the only way to defend themselves against atomic weapons was to have similar weapons of their own.
I. (Gain Attention and Interest): March 11, 2011. 2:45 pm. Operations at the Fukushima Daiichi Nuclear Power Plant continued as usual. At 2:46 pm a massive 9.0 earthquake strikes the island of Japan. All nuclear reactors on the island shut down automatically as a response to the earthquake. At Fukushima, emergency procedures are automatically enabled to shut down reactors and cool spent nuclear fuel before it melts-down in a catastrophic explosion. The situation seems under control, emergency diesel generators located in the basement of the plant activate and workers breathe a sigh of relief that the reactors are stabilizing. Then 41 minutes later at 3:27 pm the unthinkable occurs. As workers monitored the situation from within the plant, citizens from the adjacent town ran from the coastline as a 49 foot tsunami approached. The tsunami came swiftly and flooded the coastline situated Fukushima plant. Emergency generators were destroyed and cooling systems failed. Within hours, a chain of events led to an explosion of reactor 1 of the plant. One by one in the subsequent days reactors 2, and 3 suffered similar fates as explosions destroyed containment cases and the structures surrounding the reactors (Fukushima Accident). Intense amount...
Nuclear energy is produced during the process named nuclear fission or nuclear fusion. The development of nuclear energy started in the 20th century and there is now worldwide recognition for using nuclear energy. Popular countries that operates nuclear power are United States, France, Japan, and Russia, the nuclear energy generates up to 6% of the world’s electricity supplies. Even though the energy is mostly used by many countries, but it may causes side effect to the living things in the environment. (WNA, 2012)
Nuclear power is generated by using electricity created during a controlled fission or fusion reaction (“Nuclear Energy.” Global Issues in Context Online Collection). Nuclear fission is a process that releases energy when a nucleus in one atom is separated into two nuclei. Nuclear fusion occurs when the nuclei of two hydrogen atoms are fused together producing a larger nuclei along with energy (“Nuclear Energy.” Opposing Viewpoints Online Collection). In the 1950s, the use of nuclear power became a realistic idea for countries with nuclear capabilities and nuclear power programs (“Nuclear Energy.” Global Issues in Context Online Collection). The international nuclear program grew rapidly and by 1999 there were 436 nuclear power plants in 32 different counties. The United States, Japan, Canada, Russia, India and France remain the largest users of nuclear energy since the 1990s; however, the dependency on nuclear power varies greatly around the world because of differences in the individual nuclear power programs availability of needed resources (“Nuclear Energy.” Opposing Viewpoints Online Collection).
One of the biggest and most prevalent problems is the need for clean, renewable, sustainable energy. On the forefront of these problems comes the following solutions: nuclear energy, hydro-electric energy, and photovoltaic energy. With the need for energy in today’s current world, exploring different ways of producing power is necessary. The differences and similarities between nuclear energy and alternative energy are important to look over and examine in depth, so that it is plain to see the positive and negative effects of energy production. To begin, nuclear power is produced by nuclear fission, which is the splitting of an atom to start a chain reaction (“11 Facts”).
Nuclear fusion occurs when two atomic nuclei collide with enough energy to bind together to form one nucleus. Nuclear fusion occurs in the core of our sun, and is the source of its tremendous heat. In the sun hydrogen nuclei, single protons, fuse together and form a new nucleus. In the conversion, a small amount of mass is converted into energy. It is this energy that heats the sun.
The energy industry is beginning to change. In today’s modern world, governments across the globe are shifting their focuses from traditional sources of power, like the burning coal and oil, to the more complex and scientific nuclear power supply. This relatively new system uses powerful fuel sources and produces little to no emissions while outputting enough energy to fulfill the world’s power needs (Community Science, n.d.). But while nuclear power seems to be a perfect energy source, no power production system is without faults, and nuclear reactors are no exception, with their flaws manifesting in the form of safety. Nuclear reactors employ complex systems involving pressure and heat. If any of these systems dysfunctions, the reactor can leak or even explode releasing tons of highly radioactive elements into the environment. Anyone who works at or near a nuclear reactor is constantly in danger of being exposed to a nuclear incident similar to the ones that occurred at the Chernobyl and Fukushima Daiichi plants. These major accidents along with the unresolved problems with the design and function of nuclear reactors, as well as the economic and health issues that nuclear reactors present serve to show that nuclear energy sources are not worth the service that they provide and are too dangerous to routinely use.
Whilst there are clear arguments for and against nuclear energy, the future is promising; with scientists working on potential breakthroughs such as nuclear fusion, and the design of newer and better and reactors. Nuclear fusion is a reaction which causes the nuclei of atoms to collide and form a new atomic nucleus. It is essentially what heats the sun and stars and would produce no long-lived radioactive waste.22 If scientists could control the process of atomic fusion then it could become a never ending energy source for future use.
Nuclear power, the use of exothermic nuclear processes to produce an enormous amount of electricity and heat for domestic, medical, military and industrial purposes i.e. “By the end of 2012 2346.3 kilowatt hours (KWh) of electricity was generated by nuclear reactors around the world” (International atomic energy agency Vienna, 2013, p.13). However, with that been said it is evident that the process of generating electricity from a nuclear reactor has numerous health and environmental safety issues.