5. Describe the processes of energy capture and metabolism for living organisms and how they relate to one another. Be sure to address photosynthesis, glycolysis, fermentation, and respiration. Photosynthesis is one process of energy capture for living organisms. The formula for photosynthesis is 3CO2 + 6H2O + light C3H6O3 + 3O2 + 3H2O. Basically, during this process, light energy is captured and converted into chemical energy, but it goes much deeper than that. First, light is captured by chloroplasts that contain pigments that capture different photons of light and then reflect different colors. The pigments include: chlorophyll, which absorbs blue and red wavelengths but reflect green; phycobilins, which absorbs blue, green, and yellow, …show more content…
This process may also be known as the Kreb’s Cycle, or the Tricarboxylic Acid Cycle (TCA). Coenzyme A and Acetyl CoA feed into the TCA cycle to power it. First, pyruvate is transported into the matrix by Pyruvate Dehydrogenase and precedes the TCA cycle. Coenzyme A forms the high-energy bonds with the organic acids, and acetyl CoA is formed by pyruvate dehydrogenase. The purpose of the TCA cycle is to metabolize Acetyl CoA and conserve energy produced in the forms of other coenzymes such as NADH and FADH2. During the Kreb’s Cycle, many phases occur and during each phase, new products are formed or released. From TCA-1 ot TCA-4, 2 NADH are formed and 2 CO2 are released. During TCA-5, ATP is formed, and during TCA-6, FADH2 is formed. Finally, during TCA-8, NADH is formed and OAA is regenerated. The total numbers of products per acetyl CoA are: 2 CO2, 3 NADH, 1 FADH2, and 1 ATP. The numbers of products per glucose are: 4 CO2, 6 NADH, 2 FADH2, and 2 ATP. Specific enzymes exist for this process as well. First, Acetyl CoA is changed to Citrate by Citrate Synthase, then Citrate is changed to Isocitrate by Aconitase. Isocitrate is changed to α-Ketoglutarate by Isocitrate Dehydrogenase, and α-Ketoglutarate is changed to Succinyl CoA by α-Ketoglutarate Dehydrogenase. Succinyl CoA is changed to Succinate by Succinyl CoA Synthase, and Succinate is changed to Fumarate by Succinate Dehydrogenase. Fumarate is then changed to Malate by Fumarate Hydratase, and finally, Fumarate is changed Oxaloacetate by Malate Dehydrogenase. Although Acetyl CoA and glucose may feed into this process, most energy comes from the coenzymes. Oxidative Phosphorylation takes place after the Kreb’s Cycle. This process occurs within the inner membrane of the mitochondria. Oxidative phosphorylation creates a concentration gradient that requires energy to push all the
Photosynthesis consists of the following equation: Sun light Carbon dioxide + Water = = == == ==> Glucose + Oxygen Chlorophyll Chlorophyll is a substance found in chloroplasts, found in the cells of leaves.
... which is catalyzed by b-ketoacyl CoA thiolase. The products are acetyl-CoA and a long chain fatty acyl CoA that is 2 carbons shorter than the original fatty acyl CoA. One complete round of β-oxidation cleaves 2 carbons from the fatty acid chain, and the process continues until the entire fatty acid chain is broken down into acetyl propinoyl CoA. For example, an 18 carbon chain fatty acid would need to go through 9 rounds of β-oxidation in order to be completely metabolized.
Do you know how you are able to run long distances or lift heavy things? One of the reasons is cellular respiration. Cellular respiration is how your body breaks down the food you’ve eaten into adenosine triphosphate also known as ATP. ATP is the bodies energy its in every cell in the human body. We don’t always need cellular respiration so it is sometimes anaerobic. For example, when we are sleeping or just watching television. When you are doing activities that are intense like lifting weights or running, your cellular respiration becomes aerobic which means you are also using more ATP. Cellular respiration is important in modern science because if we did not know about it, we wouldn’t know how we are able to make ATP when we are doing simple task like that are aerobic or anaerobic.
Overview of Cellular Respiration and Photosynthesis Written by Cheril Tague South University Online Cellular Respiration and Photosynthesis are both cellular processes in which organisms use energy. However, photosynthesis converts the light obtained from the sun and turns it into a chemical energy of sugar and oxygen. Cellular respiration is a biochemical process in which the energy is obtained from chemical bonds from food. They both seem the same since they are essential to life, but they are very different processes and not all living things use both to survive ("Difference Between Photosynthesis and Cellular Respiration", 2017). In this paper I will go over the different processes for photosynthesis and the processes for cellular respiration and how they are like each other and how they are essential to our everyday life.
= = = [IMAGE][IMAGE]6CO2 + 6h20 light energy and chlorophyll C6H1206 + 6O2 Carbon dioxide + water converted into glucose and oxygen. Theory of photosynthesis Photosynthesis is a chemical reaction, which uses the energy from sunlight to convert carbon dioxide and water to oxygen.
Photosynthesis and cellular respiration help sustain life on planet earth as both are metabolic processes in their own way. Photosynthesis is the process by which plants and other organisms use energy from the sun to form glucose from water and carbon dioxide. From there, glucose is then converted to ATP by way of cellular respiration. To convert nutrients that are biochemical energy into ATP, a process such as cellular respiration that has reactions needs to take shape in the cell of an organism, releasing waste products at the same time. For the continuous energy cycle that tolerates life on Earth as we know it Photosynthesis and Cellular respiration very essential. They have a few stages where energy and various connections occur within the eukaryotic cell. Cellular respiration takes place in the lysosome, an organelle that is found in the cytoplasm of eukaryotic cells. It uses enzymes to break down biomolecules including proteins, nucleic acids, carbohydrates, and lipids. Photosynthesis involves the chloroplasts, which contain pigments that absorb the sunlight and then transfigure them to sugars the plant can use. Those specific processes are crucial in how far and diversified evolution has
An Experiment to Investigate the Effect of Light Intensity on the Rate of Photosynthesis. Introduction Photosynthetics take place in the chloroplasts of green plant cells. It can produce simple sugars using carbon dioxide and water causing the release of sugar and oxygen. The chemical equation of photosynthesis is: [ IMAGE ] 6CO 2 + 6H20 C 6 H12 O 6 + 6O2 It has been proven many times that plants need light to be able to photosynthesize, so you can say that without light the plant would neither photosynthesize nor survive.
Our metabolism, “the totality of an organism’s chemical reactions”, manages energy usage and production of cells. We use energy constantly and our metabolism breaks down food through complex chemical reactions into energy our cells
Photosynthetic pigments are essential for life because they allow photosynthesis to occur by capturing sunlight which is then used alongside carbon dioxide and water to form organic compounds such as glucose and oxygen. The pigments allow the conversion of light energy to chemical energy which other organisms can benefit from. Oxygen is utilised by other organisms in aerobic respiration. The different pigments present in the chloroplasts allow a wide variety of wavelengths of light to be absorbed for efficient photosynthesis and provide colours to the plant to attract pollinators.
From my reading I learned that cellular respiration is a multi-step metabolic reaction type process that takes place in each living organism 's cell rather it be plant or animal. It’s my understanding that there are two types of cellular respiration, one called aerobic cellular respiration which required oxygen and anaerobic cellular respiration that does not require oxygen. In the anaerobic cellular respiration process, unlike the aerobic process oxygen is not required nor is it the last electron acceptor there by producing fewer ATP molecules and releasing byproducts of alcohol or lactic acid. The anaerobic cellular respiration process starts out exactly the same as anaerobic respiration, but stops part way through due to oxygen not being
Photosynthesis is a process in plants that converts light energy into chemical energy, which is stored in bonds of sugar. The process occurs in the chloroplasts, using chlorophyll. Photosynthesis takes place in green leaves. Glucose is made from the raw materials, carbon dioxide, water, light energy and oxygen is given off as a waste product. In these light-dependent reactions, energy is used to split electrons from suitable substances such as water, producing oxygen. In plants, sugars are produced by a later sequence of light-independent reactions called th...
Photosynthesis is a process in which plants and other organisms convert the light energy from the sun or any other source into chemical energy that can be released to fuel an organism’s activities. During this reaction, carbon dioxide and water are converted into glucose and oxygen. This process takes place in leaf cells which contain chloroplasts and the reaction requires light energy from the sun, which is absorbed by a green substance called chlorophyll. The plants absorb the water through their roots from the earth and carbon dioxide through their leaves.
During internal respiration, energy, known as ATP, is also released. This is used in many reactions within the cells. Energy needed by the body is stored in food and the process of tissue respiration releases this energy. The oxygen oxidises glucose and produces energy. This is known as aerobic respiration. The equation for the oxidation of glucose is;
Metabolism occurs in animals and humans after the ingestion of organic plant or animal foods. In the cells a series of complex reactions occurs with oxygen to convert. For example glucose sugar into the products of carbon dioxide and water and energy. This reaction is also carried out by bacteria in the decomposition/decay of waste maters on land and in water.
According to scientists, photosynthesis is “the process by which green plants and some other organisms use sunlight to synthesize foods from carbon dioxide and water. Photosynthesis in plants generally involves the green pigment chlorophyll and generates oxygen as a byproduct.” ("pho•to•syn•the•sis,")