Dehydration Of Cyclohexene Lab Report

868 Words2 Pages

Title: Dehydration Of An Alcohol: Cyclohexene From Cyclohexanol
Objective:
To produce cyclohexene through the acid catalyzed elimination of water from cyclohexanol. To understand mechanism involved in the reaction. To learn the technique of distillation.
Introduction:
A secondary alcohol, such as cyclohexanol, undergoes dehydration by an E1 mechanism. The key intermediate in the mechanism is a cyclohexyl cation, which can undergo substitution as well as elimination. To prepare a cyclohexene (olefin) in good yield, it is necessary to suppress the substitution reaction. In this experiment, the substitution reaction is suppressed by: (1) the use of strong acids with anions that are relatively poor nucleophiles ; (2) a high reaction temperature, …show more content…

Specifically, the side products are dicyclohexyl ether, polymer, mono and dicyclohexyl sulphate, and degradation products such as carbon, sulphur dioxide and carbon dioxide.
The dehydration of cyclohexanol is carried out in such a way that the product, cyclohexene, distils from the reaction mixture as it is formed, the distillation technique serves to remove the olefin from contact with the sulphuric acid before polymerization can set in and it also serves as a first stage in the eventual purification of the olefin. The products and side products fall three categories: (a) gases, composed of sulphur dioxide and carbon dioxide and carbon dioxide, (b) distillate, composed of cyclohexene, un-reacted cyclohexanol, water and traces of sulphurous acid; and (c) residue, composed of high-boiling or non-volatile substances such as dicyclohexyl ether, mono- and dicyclohexyl sulphate, polymer and …show more content…

Experimental Procedure: 10.0 g of cyclohexanol and 2 mL of conc.(85%) phosphoric acid were placed in a 50 mL ST round bottomed flask and the two were mixed by swirling. Several carborundum porcelain or anthracite boiling chips (do not use marble chips) were added, the flask was clamped to a ring stand at Bunsen burner height, and a take-off distillation adapter was attached, a thermometer, a condenser, and a small receiving flask. The reaction mixture was heated so that it boils gently and distillate boiling in the range 85-90 ℃ was obtained. When the distillate was exhausted, the heat was increasing gradually. The same receiver was using; the distillate boiling was collected in the range of 90-100℃. The two liquid layers were tested in the receiving flask to see which the aqueous layer was. With the aid of a 9-in disposable pipette, the aqueous layer was drawn off and discarded the aqueous layer. The organic layer remaining in the receiving flask was dried by adding to it 0.1-0.2g of anhydrous magnesium

More about Dehydration Of Cyclohexene Lab Report

Open Document