An Introduction to Data Mining Overview Data mining, the extraction of hidden predictive information from large databases, is a powerful new technology with great potential to help companies focus on the most important information in their data warehouses. Data mining tools predict future trends and behaviors, allowing businesses to make proactive, knowledge-driven decisions. The automated, prospective analyses offered by data mining move beyond the analyses of past events provided by retrospective tools typical of decision support systems. Data mining tools can answer business questions that traditionally were too time consuming to resolve. They scour databases for hidden patterns, finding predictive information that experts may miss because it lies outside their expectations. Most companies already collect and refine massive quantities of data. Data mining techniques can be implemented rapidly on existing software and hardware platforms to enhance the value of existing information resources, and can be integrated with new products and systems as they are brought on-line. When implemented on high performance client/server or parallel processing computers, data mining tools can analyze massive databases to deliver answers to questions such as, "Which clients are most likely to respond to my next promotional mailing, and why?" This paper provides an introduction to the basic technologies of data mining. Examples of profitable applications illustrate its relevance to today's business environment as well as a basic description of how data warehouse architectures can evolve to deliver the value of data mining to end users. The Foundations of Data Mining Data mining techniques are the result of a long process of research and product development. This evolution began when business data was first stored on computers, continued with improvements in data access, and more recently, generated technologies that allow users to navigate through their data in real time. Data mining takes this evolutionary process beyond retrospective data access and navigation to prospective and proactive information delivery. Data mining is ready for application in the business community because it is supported by three technologies that are now sufficiently mature: Massive data collection Powerful multiprocessor computers Data mining algorithms Commercial databases are growing at unprecedented rates. A recent META Group survey of data warehouse projects found that 19% of respondents are beyond the 50 gigabyte level, while 59% expect to be there by second quarter of 1996.1 In some industries, such as retail, these numbers can be much larger. The accompanying need for improved computational engines can now be met in a cost-effective manner with parallel multiprocessor computer technology.
In the past number of years data has grown exponentially. This growth in data has created problems that and a race to better monitor, monetize, and organize it. Oracle is in the forefront of helping companies from different industries better handle this growing concern with data. Oracle provides analytical platforms and an architectural platform to provide solutions to companies. Furthermore, Oracle has provided software such as Oracle Business Intelligence Suite and Oracle Exalytics that have been instrumental in organizing and analyzing the phenomenon known as Big Data.
Traditional business intelligence tools are being replaced by data discovery software. The data discovery software has numerous capabilities that are dominating purchase requirements for larger distribution. A challenge remaining is the ability to meet the dual demands of enterprise IT and business users.
CarMax faces challenges from several fronts that could threaten to disrupt their growth plans and their position as a disruptor in the used car market. The biggest challenge they face is being able to continuously secure a study supply of high quality used cars, due to the extremely competitive nature of the used car market. CarMax offers cutting edge technology to help the company identify buying trends, pricing trends, and consumer preferences down to the zip code that gave them a large competitive advantage, as “data mining” has matured and competitors have developed their own software tools, eroding the competitive advantage to CarMax.
System performance is one of the most critical issues faced by companies dealing with vast amounts of data. Companies use database systems and their applications to store, retrieve and handle this data.
In today’s society, technology has become more advanced than the human’s mind. Companies want to make sure that their information systems stay up-to-date with the rapidly growing technology. It is very important to senior-level executives and board of directions of companies that their systems can produce the right and best information for their company to result in a greater outcome and new organizational capabilities. Big data and data analytics are one of those important factors that contribute to a successful company and their updated software and information systems.
ADP, Automatic Data Processing was founded in 1949 by a business man from New Jersey, named Henry Taub. During this time the company we known by Automatic Payroll Inc. The first account the company landed was New Era Dye and Finishing, both business resided in New Jersey. In 1958, the name was changed and finalized to Automatic Data Processing, and incorporated new technology such as punch card machines to time stamp hours of employees, check printing machines, and mainframe computers. ADP was a private company until 1961 it went public. ADP has been around now for 65 years now.
Data mining has emerged as an important method to discover useful information, hidden patterns or rules from different types of datasets. Association rule mining is one of the dominating data mining technologies. Association rule mining is a process for finding associations or relations between data items or attributes in large datasets. Association rule is one of the most popular techniques and an important research issue in the area of data mining and knowledge discovery for many different purposes such as data analysis, decision support, patterns or correlations discovery on different types of datasets. Association rule mining has been proven to be a successful technique for extracting useful information from large datasets. Various algorithms or models were developed many of which have been applied in various application domains that include telecommunication networks, market analysis, risk management, inventory control and many others
This project implements the ID3 algorithm for reading data stored in multiple data sources. It comes under the broader topic of data mining. Data mining is the reading and processing of useful data from different sources. Essentially, the process of hunting for required or useful data contained in a large database is characterized as data mining. In the case of logical outcomes, a decision tree is predominantly used for analysis. The advantages of using a decision tree are that it is easier to model, analyse, and manipulate accordingly. The ID3 algorithm is used to generate a decision tree from a certain set of data.
A data warehouse comprised of disparate data sources enables the “single version of truth” through shared data repositories and standards and also provides access to the data that will expand frequency and depth of data analysis. Due to these reasons, data warehouse is the foundation for business intelligence.
Decision making refers to the process of finding and selecting options according to the priorities and values of the person making the decision. Since there are many choices involved, it is important to identify as many options as possible so as to pick the option that best fits a company’s target, goals, values and vision. Due to the integral role of decision making in company growth and financial progress, many firms such as Amazon.com and EBay are pumping in huge investments in business intelligence systems, which are made up of certain technological tools and technological applications that are created for the purpose of facilitating improved decision making process in business. In this paper, I take a critical look at Decision Support Systems and how they affect organizational Decision making.
Data stream mining is a stimulating field of study that has raised challenges and research issues to be addressed by the database and data mining communities. The following is a discussion of both addressed and open research issues [19].
The dynamics of our society bring many challenges and opportunities to the business world. Within the last decade, hundreds of jobs have emerged particularly in the technology sector to help keep up with the ever-changing world and to compete on a larger and better scale than the competition. Two key job markets and the basis of this research paper are business intelligence or BI and data mining or DM. These two fields play a very important role in small to large companies and are becoming higher desired sectors within the back offices of the workplace. This paper will explore what the meaning of BI and DM really is, how they are used and what we can expect as workers and learners of the technology and business fields for the future.
A data stream is a real time, continuous, structured sequence of data items. Mining data stream is the process of extracting knowledge from continuous, rapid data records. Data arrives faster, so it is a very difficult task to mine that data. Stream mining algorithms typically need to be designed so that the algorithm works with one pass of the data. Data streams are a computational challenge to data mining problems because of the additional algorithmic constraints created by the large volume of data. In addition, the problem of temporal locality leads to a number of unique mining challenges in the data stream case. The data mining techniques namely clustering, classification and frequent pattern mining are applied to extract the knowledge from the data streams. This research work mainly concentrates on how to find the valuable items found in a transactional data of a data stream. In the literature, most of the researchers have discussed about how the frequent items are mined from the data streams. This research work helps to find the valuable items in a transactional data. This is a new research idea in the area of data stream frequent pattern mining. Frequent Item mining is defined as finding the items which are occurring frequently and above the given threshold. Valuable item is nothing but finding the costliest item or most valuable items in a data base. Predicting this information helps businesses to know about the sales details about the valuable items which guide to make important decisions, such as catalogue drawing, cross marketing, consumer shopping and performance scrutiny. In this research work, two new algorithms namely VIM (Valuable Item Mining) and TVIM (Tree based Valuable Item Mining) are proposed for finding the...
HAND, D. J., MANNILA, H., & SMYTH, P. (2001).Principles of data mining. Cambridge, Mass, MIT Press.
Humans can expand their knowledge to adapt the changing environment. To do that they must “learn”. Learning can be simply defined as the acquisition of knowledge or skills through study, experience, or being taught. Although learning is an easy task for most of the people, to acquire new knowledge or skills from data is too hard and complicated for machines. Moreover, the intelligence level of a machine is directly relevant to its learning capability. The study of machine learning tries to deal with this complicated task. In other words, machine learning is the branch of artificial intelligence that tries to find an answer to this question: how to make computer learn?