Cells are complex organisms and are capable of acquiring the energy necessary to fuel chemical reactions for growth, repair, survival, and even reproduction. Photosynthesis & cellular respiration are the main pathways of energy flow in all living things. Photosynthesis is a process by which plants and other organisms convert, light energy from the sun, carbon dioxide from the air & water from the earth, into chemical energy stored in molecules such as glucose. Cellular respiration is a process in which oxygen is delivered to cells in an organism & metabolic process in cells leads to the production of ATP by the breakdown of organic substances. Cellular respiration occurs in the mitochondrion of the cell and photosynthesis occurs in the chloroplast. …show more content…
There are two steps in aerobic respiration: Krebs cycle and the electron transport chain. In Krebs cycle, acetyl CoA, which comes from pyruvic acid, is broken down into CO2, hydrogen atoms & ATP. The 2nd stage of aerobic respiration is ETC & chemiosmosis, where most ATP is produced. ETC of both processes is just about the same. So, CO2, H2O & ATP gets produced. The reactants are O2 & C6H12O6.There are many similarities between photosynthesis and cellular respiration. For example, the most important is the steps it goes through. Although they don't occur at same places, they do follow a general guideline but involving different reactants. In photosynthesis, plants can change their process if something isn't available (CAM and C4 plants) and so can animals in cellular respiration (aerobic and fermentation). ETC in both processes has the same task and the same process. There are other differences too, however. Photosynthesis occurs a cell structure called chloroplasts. Pancake-like sections, called thylakoids, divide chloroplasts. A stack of thylakoid is called grana (granum, plug). A grana is enclosed by stroma. The rate of photosynthesis is affected by the amount of CO2, light intensity and the temperature. Respiration occurs in the mitochondria of a cell. Krebs Cycle occurs in mitochondrial matrix, the region of space in the inner membrane. The ETC and chemiosmosis occur in the cristae of the mitochondria. Respiration is the opposite of photosynthesis that is explained by this equation: C6H12O6 + 6 O2 → 6 CO2 + 6 H2O + ATP This equation means that O2 combines with sugars to break molecular bonds, releasing ATP. By-products of this reaction are CO2 and H2O. The process of photosynthesis can be assessed as: 6 CO2 + 6 H2O + Light Energy → C6H12O6 + 6 O2 This equation means that CO2 from the air and H2O combine in the presence of sunlight to form sugars; O2 is released as a by-product of this reaction. In the end, we see that
Cellular respiration is a chemical reaction used to create energy for all cells. The chemical formula for cellular respiration is glucose(sugar)+Oxygen=Carbon Dioxide+Water+ATP(energy) or C6H12+6O2=6CO2+6H2O+ energy. So what it is is sugar and
Photosynthesis consists of the following equation: Sun light Carbon dioxide + Water = = == == ==> Glucose + Oxygen Chlorophyll Chlorophyll is a substance found in chloroplasts, found in the cells of leaves.
The equation of photosynthesis is: 6CO2 + 6H20 Þ C6H12O6 + 6O2 = = = =
Cellular respiration and photosynthesis are the two most important processes that animal and plant cells supply themselves with energy to carry out their life cycles. Cellular respiration takes glucose molecules and combines it with oxygen. This energy results in the form of adenosine triphosphate (ATP), with carbon dioxide and water that results in a waste product. Photosynthesis uses carbon dioxide and combines it with water,
Overview of Cellular Respiration and Photosynthesis Written by Cheril Tague South University Online Cellular Respiration and Photosynthesis are both cellular processes in which organisms use energy. However, photosynthesis converts the light obtained from the sun and turns it into a chemical energy of sugar and oxygen. Cellular respiration is a biochemical process in which the energy is obtained from chemical bonds from food. They both seem the same since they are essential to life, but they are very different processes and not all living things use both to survive ("Difference Between Photosynthesis and Cellular Respiration", 2017). In this paper I will go over the different processes for photosynthesis and the processes for cellular respiration and how they are like each other and how they are essential to our everyday life.
= = = [IMAGE][IMAGE]6CO2 + 6h20 light energy and chlorophyll C6H1206 + 6O2 Carbon dioxide + water converted into glucose and oxygen. Theory of photosynthesis Photosynthesis is a chemical reaction, which uses the energy from sunlight to convert carbon dioxide and water to oxygen.
The process of photosynthesis is present in both prokaryotic and eukaryotic cells and is the process in which cells transform energy in the form of light from the sun into chemical energy in the form of organic compounds and gaseous oxygen (See Equation Below). In photosynthesis, water is oxidized to gaseous oxygen and carbon dioxide is reduced to glucose. Furthermore, photosynthesis is an anabolic process, or in other words is a metabolism that is associated with the construction of large molecules such as glucose. The process of photosynthesis occurs in two steps: light reactions and the Calvin cycle. The light reactions of photosynthesis take place in the thylakoid membrane and use the energy from the sun to produce ATP and NADPH2. The Calvin cycle takes place in the stroma of the chloroplast and consumes ATP and NADPH2 to reduce carbon dioxide to a sugar.
Photosynthesis and cellular respiration help sustain life on planet earth as both are metabolic processes in their own way. Photosynthesis is the process by which plants and other organisms use energy from the sun to form glucose from water and carbon dioxide. From there, glucose is then converted to ATP by way of cellular respiration. To convert nutrients that are biochemical energy into ATP, a process such as cellular respiration that has reactions needs to take shape in the cell of an organism, releasing waste products at the same time. For the continuous energy cycle that tolerates life on Earth as we know it Photosynthesis and Cellular respiration very essential. They have a few stages where energy and various connections occur within the eukaryotic cell. Cellular respiration takes place in the lysosome, an organelle that is found in the cytoplasm of eukaryotic cells. It uses enzymes to break down biomolecules including proteins, nucleic acids, carbohydrates, and lipids. Photosynthesis involves the chloroplasts, which contain pigments that absorb the sunlight and then transfigure them to sugars the plant can use. Those specific processes are crucial in how far and diversified evolution has
Aerobic requires oxygen and takes place inside the mitochondria of iving cells. The energy is stored as adenosine triphosphate (ATP) Aerobic respiration produces 2890KJ/Mole or 38ATP. This is much more than anaerobic. The
“Photosynthesis (literally, “synthesis from light”) is a metabolic process by which the energy of sunlight is captured and used to convert carbon dioxide (CO2) and water (H2O) into carbohydrates (which is represented as a six-carbon sugar, C6H12O6) and oxygen gas (O2)” (BioPortal, n.d., p. 190).
An Experiment to Investigate the Effect of Light Intensity on the Rate of Photosynthesis. Introduction Photosynthetics take place in the chloroplasts of green plant cells. It can produce simple sugars using carbon dioxide and water causing the release of sugar and oxygen. The chemical equation of photosynthesis is: [ IMAGE ] 6CO 2 + 6H20 C 6 H12 O 6 + 6O2 It has been proven many times that plants need light to be able to photosynthesize, so you can say that without light the plant would neither photosynthesize nor survive.
They are the same reactions, but occur in reverse. In photosynthesis, carbon dioxide and water yield glucose and oxygen respiration, process glucose and oxygen yield carbon dioxide and water, catabolic pathway process which requires or contains molecular oxygen for the production of adenosine triphosphate. This three step aerobic respiration cycle occurs in the cytoplasm and in the organelles called mitochondria. Within this process, cells break down oxygen and glucose in a storable form called adenosine triphosphate or ATP. This cellular respiration or sometimes called an exothermic reaction is similar to a combustion type reaction whereby the cell releases energy in the form heat but at a much slower rate within a living cell.
Photosynthesis is a process in plants that converts light energy into chemical energy, which is stored in bonds of sugar. The process occurs in the chloroplasts, using chlorophyll. Photosynthesis takes place in green leaves. Glucose is made from the raw materials, carbon dioxide, water, light energy and oxygen is given off as a waste product. In these light-dependent reactions, energy is used to split electrons from suitable substances such as water, producing oxygen. In plants, sugars are produced by a later sequence of light-independent reactions called th...
Photosynthesis is a process in which plants and other organisms convert the light energy from the sun or any other source into chemical energy that can be released to fuel an organism’s activities. During this reaction, carbon dioxide and water are converted into glucose and oxygen. This process takes place in leaf cells which contain chloroplasts and the reaction requires light energy from the sun, which is absorbed by a green substance called chlorophyll. The plants absorb the water through their roots from the earth and carbon dioxide through their leaves.
Photosynthesis is the process in which living cells from plants and other organisms use sunlight to produce nutrients from carbon dioxide and water, the image below “Diagram of photosynthesis 1,” helps show this process. Photosynthesise generally creates oxygen as a by-product through the use of the green pigment, chlorophyll, found in the plant that helps this reaction occur. “Photosynthesis provides us with most of the oxygen we need in order to breathe. We, in turn, exhale the carbon dioxide needed by plants,” (factmonster,2017). This is able to show us why photosynthesis is so greatly needed to occur through plants in order to give one another essentials needed for continuity of life. “Plants perform photosynthesis because it generates the food and energy they need for growth and cellular respiration,” (photosynthesieeducation, 2016).