Animal Cell Anatomy
The cell is the basic unit of life. All organisms are made up of cells (or in some cases, a single cell). Most cells are very small; most are invisible without using a microscope. Cells are covered by a cell membrane and come in many different shapes. The contents of a cell are called the protoplasm. The following is a glossary of animal cell terms:
Cell membrane - the thin layer of protein and fat that surrounds the cell. The cell membrane is semipermeable, allowing some substances to pass into the cell and blocking others.
Centrosome - (also called the "microtubule organizing center") a small body located near the nucleus - it has a dense center and radiating tubules. The centrosomes is where microtubules are made. During cell division (mitosis), the centrosome divides and the two parts move to opposite sides of the dividing cell. The centriole is the dense center of the centrosome.
…show more content…
Golgi body - (also called the Golgi apparatus or Golgi complex) a flattened, layered, sac-like organelle that looks like a stack of pancakes and is located near the nucleus. It produces the membranes that surround the lysosomes. The Golgi body packages proteins and carbohydrates into membrane-bound vesicles for "export" from the cell.
Lysosome - (also called cell vesicles) round organelles surrounded by a membrane and containing digestive enzymes. This is where the digestion of cell nutrients takes place.
Mitochondrion - spherical to rod-shaped organelles with a double membrane. The inner membrane is in folded many times, forming a series of projections (called cristae). The mitochondrion converts the energy stored in glucose into ATP (adenosine triphosphate) for the
These organelles produce chemical reactions from the energy that the sun gives them. The Golgi complex's structure is made up of many flattened membranes sacs that are surrounded by tubules or vesicles. These are called the cisternae. The golgi complex accepts vesicles from the endoplasmic reticulum and modifies them for usage in the cell.
Epithelia tissue : Epithelial tissue, the type of tissue that lines the surfaces and cavities of your body 's organs, epithelia may be composed of several layers of cells called compound epithelia or just a single layer known as simple epithelia.
The endothelium is a cell layer that is lined on the interior surface of lymphatic vessels and blood vessels, which are made up of endothelial cells (Dorland, 2012).
The pancreas can be divided into two sections when studying the histology. The pancreas has exocrine and endocrine functions, each with unique cell types. The exocrine pancreas serves to secrete digestive enzymes into the duodenum. Some of the specific enzymes and secreted substances are Proteases, lipase, amylase, bicarbonate, and water (Bowen, “Exocrine Secretions”). These enzymes are used to break down protein, fat, and carbohydrates respectively. The bicarbonate simply act as an acid buffer to prevent damage of the small intestine as the stomach acid must be neutralized. The enzymes are created in acinar cells and the bicarbonate is synthesized in epithelial cells surrounding pancreatic ducts (Bowen “Exocrine
Endoplasmic Reticulum, Golgi Apparatus, and Lysosomes. (2013). In Scitable Nature Education. Retrieved December 09, 2013, from http://www.nature.com/scitable/topicpage/endoplasmic-reticulum-golgi-apparatus-and-lysosomes-14053361
In the Metaphase, chromosomes around equatorial plane of spindle with centromeres of chromosome attached to fibrils of spindle.
The mitochondria produces food for the cell by converting energy the cell needs. The mitochondria and the nucleus are two organelles within a cell that have many of the same similarities. Both organelles are made of two membranes. These layers isolate within the organelle all things considered, yet have protein channels that permit things to go in and out. Both contain DNA material that conveys qualities that encode for proteins. Both have qualities that make ribosomes, the machines that read the guidelines in RNA to make
The cytoskeleton is a highly dynamic intracellular platform constituted by a three-dimensional network of proteins responsible for key cellular roles as structure and shape, cell growth and development, and offering to the cell with "motility" that being the ability of the entire cell to move and for material to be moved within the cell in a regulated fashion (vesicle trafficking)’, (intechopen 2017). The cytoskeleton is made of microtubules, filaments, and fibres - they give the cytoplasm physical support. Michael Kent, (2000) describes the cytoskeleton as the ‘internal framework’, this is because it shapes the cell and provides support to cellular extensions – such as microvilli. In some cells it is used in intracellular transport. Since the shape of the cell is constantly changing, the microtubules will also change, they will readjust and reassemble to fit the needs of the cell.
The Golgi complex's structure is made up of many flattened membranes sacs that are surrounded by tubules or vesicles. These are called the
Mitochondria are small granular or filamentous bodies which are called the power house of the cell. They are associated with cellular respiration and are the sources of energy. In 1850, the German biologist Rudolph Kolliker first observed mitochondria as granular structures in striated muscle [Powar, C.B. 2010; Albert et al. 2010]. In 1898, the scientist Benda developed the crystal violet staining technique and called the structures mitochondria. The average length of the mitochondrion is 3-4 microns and the average diameter 0.5 to 1.0 micron. In muscles, most of the mitochondria are 2-3 microns long. Mitochondria have different shapes. The number of mitochondria is different in different types of cells of different organs. They are distributed evenly in the cytoplasm. In sperms they are present in tail, in muscles they lie between the myofibrils. Mitochondria may move freely in some cells. Where ever ATP required. Movement is less in animals than plants. In plants they change their shape and volume [Powar, C.B. 2010; Albert et al. 2010].
The Animal Cell is a little bit different than the Plant Cell for only a couple of reasons. One is how the Plant Cell has a cell wall and the Animal Cell doesn’t. The cell wall protects and gives structure to the cell. Then there is the Nucleus, which serves as a control center for the cell. Inside the Nucleus there are one or more Nucleoli. They are dense, granular bodies that disappear at the beginning of cell division and reappear at the end. Then you have the Cytoplasm. This is the watery material lying within the cell between the cell membrane and the nucleus. The Cytoplasm also contains organelles, which have specific functions in the cell metabolism. Then there are the Golgi Bodies, which serve as processing, packaging, and storage for the cell. These organelles package and ship things out. Another parts of the cell, a very important one in fact, are the Lysosomes. These organelles are used to break things down and contain enzymes.
III. Conclusions All organisms in life are made of at least one or more cells. Cells are the basic units to life. Without cells life cannot exist.
Cell body- Cell body contains nucleus of the cell. It secrets enzymes that maintain the life of the cell. (The Central Nervous System, 2014)
This report provides an insight into the differences in the structure of cells and the way that they carry out their internal mechanisms. Cells form the basis of all living things and they are the smallest single unit of life. Cell biology is the study of cells and how they function, from the subcellular processes which keep them functioning, to the
There are certain things that must happen first before the cell can actually split. There is a six step process required during Mitosis. The first five steps of mitosis are called prophase, prometaphase, metaphase, anaphase, and telophase. This is where all the training and preparation is done for cell division. The sixth step is Cytokinesis, and that is when the cell literally splits into two. Like I said, there are certain things in order to happen before it can enter the M phase. first, it must meet the requirements of the certain size and environment. Since in the S phase the cell duplicated it’s amount of chromosomes it be represented as 2N, where N equals the number of chromosomes in the cell. Cells about to enter M phase, which have passed through S phase and replicated their DNA, have 4N chromosomes. Because of this they are now allowed to enter within the M phase to prophase. Here is where the cell thickens up its chromosomes and begin to sprout microtubules from clone centrosomes. Microtubules tub-like are protein filaments and where the chromosomes migrate but are still within the nuclear envelope in the nucleus. There are centromeres, that are inside the chromosomes and during the later process of this phase, specialized microtubules called kinetochores, assemble on the centromere then later attach to these sites. They act like magnets and go