Energy Systems and Aquathon
The human body is composed of three different energy systems that “provide energy for muscular work and exercise, including two anaerobic systems and one aerobic.” (Amezdroz, Dickens, Hosford, Stewart, and Davis,2010) (Refer to Appendix A). Our bodies need a continuous supply of energy in the form of ATP (Adenosine Phosphate) to do work. All three systems produce ATP to fuel our bodies with energy depending on the conditions of the activities, such as duration and intensity. An aquathon is “the simplest form of multisport, it consists of swimming and running” (Triathlon.org, 2018). This analytical exposition will justify how the contribution of energy from the aerobic system supports my aquathon capacities.
Energy
…show more content…
All three energy systems produce ATP in the form of energy. ATP is composed of the nitrogen base adenine, the pentose (5C) sugar ribose, and three phosphate groups. ATP’s primary source is carbohydrates (Refer to Appendix B). “They are obtained from foods known as complex carbohydrates.” (Amezdroz, et al, 2010) (Refer to Appendix C). When energy is required, “ATP works by losing the endmost phosphate group when instructed to do so by an enzyme.” ATP molecules can be found in all cells(Bris.ac.uk, 2018) (Refer to Appendix D). When the body is at rest there is a “low demand for ATP all energy is produced aerobically.” (Amezdroz, et al, …show more content…
Heart rate is an indicator to demonstrate the intensity and duration of exercise. The aerobic system falls under the aerobic threshold. The aerobic threshold is “the heart rate above which you gain aerobic fitness, at 60% of our MHR.” (Bbc.co.uk, 2018). Towards the end of the Aquathon the aerobic system can no longer keep with the intensity, so the anaerobic threshold begins in the last few minutes of exercise. The anaerobic threshold “is the heart rate above which you gain anaerobic fitness. You cross your anaerobic threshold at 80% of your MHR.” (Bbc.co.uk, 2018). The anaerobic systems function without the use of oxygen. “They burn through ATP and then turn to anaerobic glycolysis, using glucose and glycogen for fuel with a by-product of lactate.” (Verywell Fit, 2018). When working anaerobically it creates oxygen debt and can only continue to keep working for a few minutes. Oxygen Debt is the oxygen consumption post exercise to replenish creatine
Submaximal and maximal exercise testing are two analytic methods that can be used to examine the cardiovascular, and cardiorespiratory fitness/health levels of the individual being examined. Submaximal testing is usually preferred over maximal mainly because the submaximal exam is more practical in a fitness/health environment. Both test require the individual being examined to perform controlled exercise on a(n) treadmill/ergometer until either steady state has consecutively been reached (submax), or the individual reaches their max (close to it). Being that both test are set to exceed time limits of more than 3 minutes we examine the use of the ATP-PC, Glycolytic, and Oxidative energy systems. Although a huge portion of the test involves the use of the oxidative energy system, we must remember that the three systems are co-occurrent.
The Queens College/McArdle Step Test, the Rockport One Mile Walk Test, and the 1.5 Mile Run Test are three different field tests that were performed in this lab that were used to measure and predict an individual’s aerobic capacity. The measurement of aerobic capacity, or VO2 max, is a valid way to assess an individual’s cardiorespiratory fitness level. VO2 max refers to the maximal amount of oxygen an individual utilizes during intensive exercise. A higher VO2 max demonstrates a more efficient cardiorespiratory system as an individual with a higher VO2 max can sustain a higher intensity for a longer
In the light independent stage of photosynthesis ATP is again used to break down a molecule. In the Calvin cycle after glycerate 3-phosphate is reduced, then ATP breaks down and loses a phosphate group (becoming ADP). The phosphate group is then gained by the glycerate 3-phosphate molecule and it becomes triose phosphate. ATP is then used furthermore in product synthesis (anabolism) this is where energy is required to convert the triose phosphate into more complex molecules such as amino acids or lipids.
•While exercising your lungs tries to increase the intake of oxygen as well as release the carbon dioxide.
In this lab, we explored the theory of maximal oxygen consumption. “Maximal oxygen uptake (VO2max) is defined as the highest rate at which oxygen can be taken up and utilized by the body during severe exercise” (Bassett and Howley, 2000). VO2max is measured in millimeters of O2 consumed per kilogram of body weight per min (ml/kg/min). It is commonly known as a good way to determine a subject’s cardio-respiratory endurance and aerobic fitness level. Two people whom are given the same aerobic task (can both be considered “fit”) however, the more fit individual can consume more oxygen to produce enough energy to sustain higher, intense work loads during exercise. The purpose of this lab experiment was performed to determine the VO2max results of a trained vs. an untrained participant to see who was more fit.
Do you know how you are able to run long distances or lift heavy things? One of the reasons is cellular respiration. Cellular respiration is how your body breaks down the food you’ve eaten into adenosine triphosphate also known as ATP. ATP is the bodies energy its in every cell in the human body. We don’t always need cellular respiration so it is sometimes anaerobic. For example, when we are sleeping or just watching television. When you are doing activities that are intense like lifting weights or running, your cellular respiration becomes aerobic which means you are also using more ATP. Cellular respiration is important in modern science because if we did not know about it, we wouldn’t know how we are able to make ATP when we are doing simple task like that are aerobic or anaerobic.
However, in anaerobic respiration (glycolysis and fermentation) only two (2) adenosine triphosphate (ATP) can be obtained. Now, for photosynthesis it is actually a carbon-fixation which is 3CO2+9ATP+6NADPH+H2O--- glyceraldehyde3phosphate+8Pi+9ADP+6NADP which turns out to just be eight-teen (18) ATP per glucose molecules in
... uptake during submaximal exercise but did increase heart rate and the rate-pressure product at rest and during both exercise and recovery’.
During the first one or two minutes of exercise, before the heart has pumped enough oxygenated blood to the working muscles, the muscles are powered by anaerobic energy. In order for these muscles to continue exercise, the body must supply them with continuous supply of oxygen, the more efficiently this is done, the better the cardiovascular fitness level. During cardiovascular conditioning, a program such as interva...
These results make sense because the heart beats faster in order to keep the body’s cells well equipped with oxygen. For one to continue exercising for long amounts of time, cells need to create ATP in order to use energy. Oxygen must be present for the process of creating ATP, which not only explains why higher respiratory rates occur during exercise but also faster heart rates. When the heart is beating rapidly, it is distributes oxygenated blood as fast as the body n...
Hypothesis – I predict that as the intensity increases during exercise the heart rate will also increase. I think this because your body needs oxygen in order to efficiently break down glucose and process it into your cells. As the exercise intensifies, you need more energy and therefore more oxygen. Your blood carries oxygen from the lungs to your muscles. To keep up with these increased oxygen needs, you have to have more blood going to your muscles. As a result, your heart pumps faster, sending more oxygenated blood to your muscles per second.
If cells are denied energy, they will die. The second law of thermal dynamics says energy is lost in the form of heat whenever energy changes form. ATP is stored in the c. Glucose produced by C02, water and ATP. Respiration may be said to be a controlled breakdown of glucose that produces ATP for cell activities to be carried out. The purpose of the lab was to show the effect of temperature on the rate of respiration.
AIM: - the aim of this experiment is to find out what the effects of exercise are on the heart rate. And to record these results in various formats. VARIABLES: - * Type of exercise * Duration of exercise * Intensity of exercise * Stage of respiration
2 Cecil M. Colwin, Swimming Into the 21st Century, (Champaign: Human Kinetics, 1992) 20-32, 58-59
Aerobic exercise involves improving the cardiovascular system. It increases the efficiency with which the body is able to utilize oxygen (Dintiman, Stone, Pennington, & Davis, 1984). In other words, aerobic exercise means that continuous and large amounts of oxygen are needed to get in order to generate the amount of energy needed to complete the workout. The most common type of aerobic exercise is long-distance running, or jogging. While running, the body requires large amounts of energy in order for the body to sustain energy. “During prolonged exercise, most of the energy is aerobic, derived from the oxidation of carbohydrates and fats” (Getchell, 1976).