In this experiment there were two hypotheses formed. The null hypothesis stated that different light intensities will not affect the response of the house crickets, Acheta domesticus. In contrast, the alternate hypothesis stated that A.domesticus will be affected by different light intensities which will then hinder its response. The prediction made initially was that A. domesticus will be affected by light and it will prefer a brighter environment because of the potential heat that could be generated from the light source. However, further research showed that the crickets prefer shady areas such as cervices or burrows underneath rocks to prevent predation.
We were unable to reject the null hypothesis with our results from trial one. The calculated chi value was less than the critical value. Our calculated chi value was 5.00, which is 0.99 less than the critical value at 5.99. Although the results did show a trend that followed our initial prediction where bright light is preferred amongst the house crickets, the statistical results demonstrated that these observations were mainly random occurrences. Initially, before calculating our statistical results, we thought that the crickets picked the brighter region because it is often associated with heat; since the house cricket needs heat in order to develop and survive, we thought that this was an important factor that may influence the cricket’s choice in preferable section. During our experiment, we also observed that many of the crickets were not really decided when placed into our experimental setup. Many of the house crickets only ran around in circles in the stacking dish. After the two minute timeframe, we marked the location of each cricket and most of the crickets rema...
... middle of paper ...
...ouse crickets stayed in one area for longer period of time as oppose to running in circles as observed in the first trial. Another difference we made to the second trial was the usage of a black circular plastic strip instead of an entire garbage bag around the stacking dish. This led to the increase in lux for each section by approximately 2 to 5 lux. This change also created more obvious shadows and made the selections more distinct. This will also have an effect on the ocelli and compound eyes of the A. domesticus which is responsible for sending neurotic signals to the brain in order for the house cricket to formulate the appropriate response to the different light intensities. The subtle change of lux from trial one to trial two made it easier for the crickets to respond to the different light intensities due to their sensitivity to various light intensities.
Madagascar hissing cockroaches (Gromphadorhina portentosa) were the ectotherms used to compare standard metabolic rates and mass specific metabolic rates between organisms. To calculate metabolic rates for these individuals a system comprised of many parts was needed. A gas pump was needed to deliver airflow into the system. This gas pump was connected to a flow meter that could detect the flow rate of the gas passing through. The air would then flow into a Ascarite Column that would scrub out the CO2 from the system before the animal chamber was reached so that no CO2 that was not emitted by the animal would be collected. Then the Madagascar hissing cockroach would be in the animal chamber connected to the Ascarite Column and it would
We observed Sowbugs in multiple environments to determine which environment they preferred. The observational chamber was a rectangle box split equally in half. One side of this rectangle was filled with dry sand that had been heated for five minutes by a lamp, and the other side was filled with damp soil that did not receive the lamp heat. We placed each sowbug on the middle boarder of the cool, damp soil and the hot, dry sand. We each chose one sowbug to track, and made a record of its placement each minute for five minutes total. We repeated this process three times. After each repetition, we removed the sowbugs, and replaced them with new sowbugs to observe. After this observation, we shared, and recorded our results. The sowbugs spent
The Artemia franciscana can survive in extreme conditions of salinity, water depth, and temperature (Biology 108 laboratory manual, 2010), but do A. franciscana prefer these conditions or do they simply cope with their surroundings? This experiment explored the extent of the A. franciscanas preference towards three major stimuli: light, temperature, and acidity. A. franciscana are able to endure extreme temperature ranges from 6 ̊ C to 40 ̊ C, however since their optimal temperature for breeding is about room temperature it can be inferred that the A. franciscana will prefer this over other temperatures (Al Dhaheri and Drew, 2003). This is much the same in regards to acidity as Artemia franciscana, in general thrive in saline lakes, can survive pH ranges between 7 and 10 with 8 being ideal for cysts(eggs) to hatch (Al Dhaheri and Drew, 2003). Based on this fact alone the tested A. franciscana should show preference to higher pH levels. In nature A. franciscana feed by scraping food, such as algae, of rocks and can be classified as a bottom feeder; with this said, A. franciscana are usually located in shallow waters. In respect to the preference of light intensity, A. franciscana can be hypothesized to respond to light erratically (Fox, 2001; Al Dhaheri and Drew, 2003). Using these predictions, and the results of the experimentation on the A. franciscana and stimuli, we will be able to determine their preference towards light, temperature, and pH.
After results, it was concluded that isopods prefer normal temperature conditions over warm conditions. We created these environments by adding water onto filter papers with the accounted for temperature measurements. The reason for the results could be seen in a usual isopod environment, it is usually dark, fresh, and moist, and the normal water temperature being the closest to that was the reason for their choosing. The Isopods seemed to locate the appropriate environment by the use of their antennas. For the investigation the normal water and warm water temperatures were independent variables. The observations were the control. The isopods behavior served as the dependent variables. The isopod behavior would be classified as movement in response to a cooler temperature environment taxis. All in all the hypothesis, “If the isopods are exposed to normal and warm temperatures then the normal temperature will be preferred” proved to be
To conduct the experiment, the beetles were massed, then attached to a petri dish with a 30 centimeter piece of dental floss. The beetle’s mass was the independent variable. Afterwards, the floss was tied to the beetle’s midsection with a slip knot. Then, the beetle was placed on a piece of fabric with the petri dish attached to it. As soon as the beetle was able to move with one paperclip inside the petri dish, more were added, one by one, until it could not move any further. After the beetle could not pull any more, the paperclips were massed and the results were recorded. The dependent variable was the mass that the beetles could pull. No control group was included in this experiment.
1. We hypothesize that the metabolic rate for the cricket and the cockroach will be different when the two animals experience physical stress and temperature changes.
Planaria usually live in water, water doesn’t have any effect on them which the reason why it is used as a control group in this experiment. Planarian will be put near the edge in a two-chamber tray containing water, in the side that is not covered with a dark piece of paper. Five planaria will be tested in a 2- chamber tray. We will measure how long it takes the planaria to move from the edge of a chamber receiving light, to the dark chamber. Subsequently, start by adding the lower concentration of caffeine in the water, replacing planarian in the same position and measuring how long it takes now to go back to the dark chamber in the presence of caffeine. We will duplicate the same procedure with higher concentrations of caffeine and additionally take the average of the time all five planaria took to move from the edge of the chamber in brightness, to the dark chamber in different concentrations of
Abstract: The house cricket, Acheta domesticus, was used to test whether food and potential mates drive aggressive behavior. Male crickets were randomly selected in pairs and place into a cage to observe aggressive behaviors in the presence of no food, food, and female. The cage provided a confine area for the crickets to fight one another while the variables of food and female were used in attempts of increasing aggressive interactions between the male crickets. There was no significance found through this experiment due to a lack of data. It was discovered that the experiment would have to be done at a larger scale to be able to see any significance in the two variables.
Deborah L. Duffy, Yuying Hsu, James A. Serpell ,Applied Animal Behavior Science - 1 December 2008 (Vol. 114, Issue 3, Pages 441-460, DOI: 10.1016/j.applanim.2008.04.006)
In creating the Paine killer Spider, the Eco Beaker simulator proved to be a easy and useful way of a conducting the experiment. By randomly selecting parameters for the spiders' eyesight, speed, and reproduction the Spider Division was we able to come up with numbers that would stabilize the ecosystem and allow for the genetically produced spider and aphids to live together harmoniously. In a matter of hours the Spider Division was able to come up with a set of parameters for the Paine Killer Spider that would allow for perfect biological control. While there could be numerous different combinations that could work for the different parameters, the Spider division found that the Paine Killer Spiders' parameters should be set at; 1 meter for sight; 1.
Moreover, a future experiment is to determine the effect that the distance between the lamp and the solution has on the rate of photosynthesis. Several experiments with a similar setup to this experiment that vary the distances between the lamp and solution could be used to test this.
Females like to choose mates who have very bright colors as it is a sign of the male’s good health and vigor. The natural and sexual selection can affect populations in three ways: directional (environmental conditions change in a consistent direction; one extreme of phenotypes is favored), stabilizing (environmental conditions are relatively constant; intermediate phenotype is favored), and disruptive selection (environment has more than one type of useful resource; both extremes of phenotypes are favored). An example of directional selection is pesticide resistance since only the insects with a resistance are favored; an example of stabilizing selection is that the smallest lizards have a difficulty defending their territory whereas the largest lizards are most likely to be eaten by owls; an example of disruptive selection are the black-bellied seedcrackers since they either have a large beak (which they can use to eat had seeds), or a small beak (which allows them to eat soft seeds). Disruptive selection shows a balanced polymorphism, which is when two or more phenotypes are maintained in a
The purpose of this book is to show you how to accomplish a healthy and cockroach free home sensibly and affordably. From the cockroach history and evolution to community and habitat, we discuss what makes the cockroach such a formidable foe. We cover ways this insect will infiltrate your home and provide advice on professional and do-it-yourself extermination.
I chose to test the effect light has on plants because it is very interesting to test that light is a very important factor, and as the earth gets hotter it will be interesting to see what will happen at the end while sunlight is important at the moment and is a core ingredient for photosynthesis, it will also be very interesting to see what would happen if the plants had no exposure to sun at all, and if they would adapt.
Insect, small, air-breathing animal characterized by a segmented body with three main parts—head, thorax, and abdomen. In their adult forms, insects typically have three pairs of legs, one pair of antennae, and in most instances, two pairs of wings. Insects rank among the most successful animals on Earth. About one million species of insects have been identified so far, which is about half of all the animals known to science. That is why for every pound of human on the earth there are 10 pounds of insects. So that is why there are many reasons why insects are so successful, their exoskeleton, their size, their body function, the way they reproduce, and their development of metamorphosis.