Well, this looks like its using some calculations so what I would do is take my 0.045 M and equal it to the 0.25 mL of NH3 and multiply that by 45.0 mL and multiply it by 10 with an exponent of negative 3. Once all of that is multiplied together we should get an answer of 0.01135 moles of our HCI. Now we can find our “Concentration” Which means we would divide our moles (0.01125) to our vol in liters which is 0.025, once we do that, we get an answer of 0.045M of our NH3. Well, since we are on the topic of pH we know that we can use the formula: pH = -log (H3O+). Then what we would do is plug everything into the formula: pH equals -log (2.4 multiplied by 10 (with an exponent of -5). Once we find the answer to this and we add up all of our calculations, we can come to a conclusion that the answer is: 4.6197 as our pH. …show more content…
First thing you would want to do is try measuring out your volume of your solution, maybe from inside a beaker or flask. You also want to start titrating your solution until its specific endpoint has been gained. You can tell this, by the color that gives off from the solution. This is why we add a base to our concentration so we can eventually give off a color and figure out the titration. Well, I think that our methane gas and hydrogen sulfide gas would start giving off a reaction and the concentration would eventually lower. Since our concentration would begin to lower, so would our reaction rate for our reaction. Although, as our methane gas and hydrogen sulfide gas are being formed with our Hydrogen and Carbon disulfide, this is going to “jump start” a reverse reaction, which means if we start adding more of our substances to the reaction, its going to speed up the process. This will go on and on until we are at an equal rate and eventually in an dynamic
We then took 1ml of the 0.1% solution from test tube 2 using the glucose pipette and added it to test tube 3, we then used the H2O pipette and added 9ml of H2O into test tube 3 creating 10ml of 0.01% solution.
The purpose of this lab was to calculate the specific heat of a metal cylinder
We were then to make a base solution of 0.7 M NaOH. In order to standardize
For these calculations assume the temperature remains constant at 25 °C. There are four steps here. First the initial concentration of CoCl2(iPrOH)2 needs to be determined. Second, the equilibrium concentration of CoCl2(iPrOH)2 must be found. Third is the calculation of the equilibrium concentration of CoCl2(MeOH)4, then fourth, the ratio [CoCl2(MeOH)4] / [CoCl2(iPrOH)2] at equilibrium. Show all work. Remember to state the equations you are using defining all variables and constants. Then substitute in the values and show the results. Be certain all sig figs and units are correct. You are expected to follow this format in all subsequent lab work without being prompted.
I shall be measuring how much gas is given off. This will be done by measuring the amount of froth on the surface of the liquid. The oxygen released is collected in the form of these bubbles. The equation for the reaction is: (catalase) [IMAGE] H2O2 2H2O + O2 (hydrogen peroxide) (2 part water) (oxygen) I will change the concentration of H2O2 and O2 (making sure the volume stay the same, when one part of a H2O2 particle is taken, an O2 particle is added. Prediction
an unknown amino acid. A titration curve is the plot of the pH versus the volume
The porpoise of these is to determine the Specific Heat. Also known as Heat Capacity, the specific heat is the amount of the Heat Per Unit mass required to raise the temperature by one degree Celsius. The relationship between heat and temperature changed is usually expected in the form shown. The relationship does not apply if a phase change is encountered because the heat added or removed during a phase change does not change the temperature.
Some improvements to the experiment might be using Na Acetate or Na Citrate as buffers instead of KHPO4. The pH ranges are 4.5-5.5 and 4.7-5.5, respectively. This range falls closer to the ideal pH of 5, then KHPO4 (pH
After the water, has been boiling for 10 minutes, and the temperature inside the test tube has been stable for 5 minutes, record the temperature and remove the thermometer.
Determining the Concentration Of Limewater Solution Aim: The aim of this experiment is it to find out the concentration of Limewater by performing a titration with hydrochloric acid which has concentration exactly 2.00M.. What is required for me is that I have to design my own experiment and chose the right and appropriate apparatus and equipment. I will be provided with 250cm3 of limewater, which has been made to which contains approximately 1g/dm3 of calcium Hydroxide. This hypothesis from www.studentcentral.co.uk We were also give Hydrochloric acid (HCl) with a concentration of 2.00 mol/dm3 normal laboratory apparatus was also given and so was an indicator.
Investigating Heat Loss From a Container Planning We are investigating heat loss from a container and how it is affected. We could change: Room temperature Surface area Amount of water Use a lid Insulate around it Colour of tin We could measure / observe: Amount of time Temperature We will change: Surface area We will measure / observe: Temperature (every minute for 5 minutes) Our question is: Does surface area effect the rate of heat loss? We will keep these the same: Colour of tin Room temperature Amount of water Use a lid Insulate around it Preliminary investigation = == ==
= = pH 1 2 3 Average Rate of Reaction (cm3/s): 0 - 0. 3 0 0 0 0 0.000 5 0 0 0 0
175 mL of sodium hydroxide solution was retrieved and contained in a 250 mL beaker.
As discussed in class, submission of your solutions to this exam will indicate that you have not communicated with others concerning this exam. You may use reference texts and other information at your disposal. Do all problems separately on clean white standard 8.5” X 11” photocopier paper (no notebook paper or scratch paper). Write on only one side of the paper (I don’t do double sided). Staple the entire solution set in the upper left hand corner (no binders or clips). Don’t turn in pages where you have scratched out or erased excessively, re-write the pages cleanly and neatly. All problems are equally weighted. Assume we are working with “normal” pressures and temperatures with ideal gases unless noted otherwise. Make sure you list all assumptions that you use (symmetry, isotropy, binomial expansion, etc.).
The first experiments investigate the order of reaction with respect to the reactants; hydrogen peroxide, potassium iodide and sulphuric acid by varying the concentrations and plotting them against 1/time. An initial rate technique is used in this experiment so ‘the rate of reaction is inversely proportional to time.’ To find the order of reaction in respect to the reactants, 1/time is plotted against the concentration of Hydrogen Peroxide using the equation: