In this lab 4-tert-butylcyclohexanone is reduced by sodium borohydride (NaBH4) to produce the cis and trans isomers of 4-tert-butylcyclohexanol. Since the starting material is a ketone, NaBH4 is strong enough to perform a reduction and lithium aluminum hydride is not needed. NaBH4 can attack the carbonyl group at an equatorial (cis) or axial (trans) position, making this reaction stereoselective. After the ketone is reduced by the metal-hydride, hydrochloric acid adds a proton to the negatively charged oxygen to make a hydroxyl group. The trans isomer is more abundant than the cis based on the results found in the experiment and the fact that the trans isomer is more stable; due to having the largest functional groups in equatorial positions. …show more content…
To begin the experiment 50 mg of 4-tert-butylcyclohexanone is place into a tared conical vial with 0.5 mL methanol and a triangular magnetic stirrer.
While the solution is being stirred, an air condenser is attached to the vial and 12.2 mg of NaBH4 is added in 3 portions through the condenser. The condenser is capped with a drying tube containing calcium chloride and cotton. After thirty minutes a TLC analysis is taken of the reaction to see how many compounds are present. Three compounds were identified on the TLC meaning that the reaction did not go to completion and the mixture was placed back on a hot plate to react further for ten minutes longer. The TLC showed the starting product 4-tert-butylcyclohexanone and the cis-/trans- forms of 4-tert-butylcyclohexanol; the cis isomer is more polar and will appear above the trans …show more content…
isomer. The reaction mixture is then quenched with 0.05 M HCl dropwise and then extracted three times with dichloromethane (0.25 mL each time). The dichloromethane is then removed each time and placed in a test tube containing 500 mg of sodium sulfate. After this the DCM is then filter through a cotton plugged pipette into a tared 5 mL conical vial. The remaining DCM is evaporated off on a hot plate at a low heat setting and the product is set out to cool. No product was visible at first until compressed air was blown into the vial to further dry the product. The final mass of the 4-tert-butylcyclohexanol came out to be 30 mg.
Since, the expected weight was 50.63 mg the percent yield is 59.3%. A TLC was conducted on this final product and a faint spot of 4-tert-butylcyclohexanone still appeared in lane 3 of the plate; meaning the reaction did not fully go to completion. The Rf values were 0.444, 0.156, and 0.111, where the lowest value is the trans isomer and the highest value is the ketone. This affected the IR spectrum conducted by having a carbonyl group peak at 1715 cm-1 which should not be present if all the product was 4-tert-butylcyclohexanol. However, the IR spectrum still showed peaks at 3292 cm-1 (hydroxyl group), 2939 cm-1 (sp2 carbon bonded to hydrogen) and 2859 cm-1 (sp3 carbon bonded to hydrogen) which support the presence of the alcohol. The accepted melting point of 4-tert-butylcyclohexanol is in the range of 62 – 70˙C (Lab Manual). The two melting point measurements using the Mel-Temp® machine gave ranges of 57 – 61˙C and 58 – 62˙C, which is not exact due to some 4-tert-butylcyclohexanone being present that has a low melting point of around 47 – 50˙C
(PubChem.com). The 1H-NMR of 4-tert-butylcyclohexanol shows significant peaks at 3.5ppm and 4ppm. Based on how the peak at 3.5ppm is a triplet of triplets indicates that it is the trans isomer and the quintet peak at 4ppm is the cis isomer. The multiplicity of the trans peaks is 3.56 and the multiplicity of the cis peak is 1, meaning the trans isomer is more abundant by a 3.56:1 ratio. There were a few possible sources of error when this lab was conducted. Most detrimentally was that during the experiment the conical vial containing the final product tipped over and some product was lost, which most definitely decreased the percent yield. Also, a lot of sodium sulfate was used to dry the product due to the fact there was too much water in our mixture.
As a final point, the unknown secondary alcohol α-methyl-2-naphthalenemethanol had the R-configuration since it reacted the fastest with S-HBTM and much slower with R-HBTM. TLC was a qualitative method and ImageJ served as a quantitative method for determining which reaction was the faster esterification. Finally, 1H NMR assisted in identifying the unknown from a finite list of possible alcohols by labeling the hydrogens to the corresponding peaks.
Reacting 1-butanol produced 2-trans-butene as the major product. 1-butanol produces three different products instead of the predicted one because of carbocation rearrangement. Because of the presence of a strong acid this reaction will undergo E1 Saytzeff, which produces the more substituted
In a small reaction tube, the tetraphenylcyclopentadienone (0.110 g, 0.28 mmol) was added into the dimethyl acetylene dicarboxylate (0.1 mL) and nitrobenzene (1 mL) along with a boiling stick. The color of the mixed solution was purple. The solution was then heated to reflux until it turned into a tan color. After the color change has occurred, ethanol (3 mL) was stirred into the small reaction tube. After that, the small reaction tube was placed in an ice bath until the solid was formed at the bottom of the tube. Then, the solution with the precipitate was filtered through vacuum filtration and washed with ethanol. The precipitate then was dried and weighed. The final product was dimethyl tertraphenylpthalate (0.086 g, 0.172mmol, 61.42%).
The goal of this two week lab was to examine the stereochemistry of the oxidation-reduction interconversion of 4-tert-butylcyclohexanol and 4-tert-butylcyclohexanone. The purpose of first week was to explore the oxidation of an alcohol to a ketone and see how the reduction of the ketone will affect the stereoselectivity. The purpose of first week is to oxidize the alcohol, 4-tert-butylcyclohexanol, to ketone just so that it can be reduced back into the alcohol to see how OH will react. The purpose of second week was to reduce 4-tert-butylcyclohexanol from first week and determine the effect of the product's diastereoselectivity by performing reduction procedures using sodium borohydride The chemicals for this lab are sodium hypochlorite, 4-tert-butylcyclohexanone
Saturated sodium chloride solution, also known as brine solution, is used to wash the distillate mixture. The distillate mixture is the phosphoric acid the co-distilled with the product. The brine solution also removes most of the water from the 4-methylcyclohexane layer. When six drops of 4-methylcyclohexene were added with two
2-ethyl-1,3-hexanediol. The molecular weight of this compound is 146.2g/mol. It is converted into 2-ethyl-1-hydroxyhexan-3-one. This compounds molecular weight is 144.2g/mol. This gives a theoretical yield of .63 grams. My actual yield was .42 grams. Therefore, my percent yield was 67%. This was one of my highest yields yet. I felt that this was a good yield because part of this experiment is an equilibrium reaction. Hypochlorite must be used in excess to push the reaction to the right. Also, there were better ways to do this experiment where higher yields could have been produced. For example PCC could have been used. However, because of its toxic properties, its use is restricted. The purpose of this experiment was to determine which of the 3 compounds was formed from the starting material. The third compound was the oxidation of both alcohols. This could not have been my product because of the results of my IR. I had a broad large absorption is the range of 3200 to 3500 wavenumbers. This indicates the presence of an alcohol. If my compound had been fully oxidized then there would be no such alcohol present. Also, because of my IR, I know that my compound was one of the other 2 compounds because of the strong sharp absorption at 1705 wavenumbers. This indicates the presence of a carbonyl. Also, my 2,4-DNP test was positive. Therefore I had to prove which of the two compounds my final product was. The first was the oxidation of the primary alcohol, forming an aldehyde and a secondary alcohol. This could not have been my product because the Tollen’s test. My test was negative indicating no such aldehyde. Also, the textbook states that aldehydes show 2 characteristic absorption’s in the range of 2720-2820 wavenumbers. No such absorption’s were present in my sample. Therefore my final product was the oxidation of the secondary alcohol. My final product had a primary alcohol and a secondary ketone
Discussion and Conclusions: Interpreting these results have concluded that relative reactivity of these three anilines in order of most reactive to least reactive go; Aniline > Anisole > Acetanilide. Aniline, has an NH2 , the most active substituent , and adds to any ortho/para position available on the ring. This data is confirmed with the product obtained, (2,4,6 tribromoaniline, mp of 108-110 C). As for anisole, it has a strongly activating group attached, OMe an alkoxy group, and it added in two of the three available spots, both ortho. The results conclude: (2,4-Dibromoanisol mp 55-58 C ). Acetanilide has a strong activating group attached, acylamino group, but this group is large and the ortho positions are somewhat hindered so the majority of the product obtained added at the para position, results conclude: (p-bromoacetanilide mp 160-165 C). Since all the substituents attached to the aromatic rings were activators the only products able to be obtained were ortho/para products.
A weak peak was at a position between 1600-1620 cm-1 can also be seem in the IR, which was likely to be aromatic C=C functional group that was from two benzene rings attached to alkynes. On the other hand, the IR spectrum of the experimental diphenylacetylene resulted in 4 peaks. The first peak was strong and broad at the position of 3359.26 cm-1, which was most likely to be OH bond. The OH bond appeared in the spectrum because of the residue left from ethanol that was used to clean the product at the end of recrystallization process. It might also be from the water that was trapped in the crystal since the solution was put in ice bath during the recrystallization process. The second peak was weak, but sharp. It was at the position of 3062.93 cm-1, which indicated that C-H (sp2) was presence in the compound. The group was likely from the C-H bonds in the benzene ring attached to the alkyne. The remaining peaks were weak and at positions of 1637.48 and 1599.15 cm-1, respectively. This showed that the compound had aromatic C=C function groups, which was from the benzene rings. Overall, by looking at the functional groups presented in the compound, one can assume that the compound consisted of diphenylacetelene and ethanol or
This week’s lab was the third and final step in a multi-step synthesis reaction. The starting material of this week was benzil and 1,3- diphenylacetone was added along with a strong base, KOH, to form the product tetraphenylcyclopentadienone. The product was confirmed to be tetraphenylcyclopentadienone based of the color of the product, the IR spectrum, and the mechanism of the reaction. The product of the reaction was a dark purple/black color, which corresponds to literature colors of tetraphenylcyclopentadienone. The tetraphenylcyclopentadienone product was a deep purple/black because of its absorption of all light wavelengths. The conjugated aromatic rings in the product create a delocalized pi electron system and the electrons are excited
It could have been lower than 100% because some product was lost during the recrystallization process, or due to an incorrect separation of the impurities when cooling the mixtures. The melting point data confirmed that the synthesized crystals were likely identical to the methoxybenzyl phenol ether because the mixed melting point was the same as the purified crystals. If the products were different or the synthesized product had to many impurities in it then the mixed melting point would have been lower than that of just the crystals, by themselves. The TLC made sense, after looking at the TLC plates under UV light and the calculation of the Rf values, it was confirmed that the 4- Methoxy-phenol was present in the unknown.
As shown in figure 2, the percentage of each isomeric alcohol in the mixture had been determined. The hydrogen atom on the carbon atom with the hydroxyl group appear at around 4.0 ppm for borneol and 3.6 ppm for isoborneol. The product ratio has been determined by integrating the peaks. A ratio of 6:1 for the Isoborneol/borneol ratio was expected and is validated by the calculations shown above, with isoborneol percentage at 83.82% and 16.17% of borneol. A CHCl3 group noted at around 7ppm and a CH2Cl2 at around 3.5ppm.
The goal of this lab is to synthesize maleic anhydride with polyethylene glycol of 200g/mol molecular weight (PEG 200) and 2,3-dimethyl-1,3-butadiene to get 4,5-dimethylcyclohexane-1,2-dicarboxylic acid anhydride and its diacid by using Diels-Alders reaction and hydrolysis, respectively. The crystals were determined using melting point determination and IR spectroscopy.
The three butene products have been verified to elute in the following order: 1-butene, trans-2-butene, and cis-2-butene. Theory: The dehydration of 2-butanol, a secondary alcohol, progresses readily in the presence of a strong acid like concentrated sulfuric acid (H2SO4). The reaction is completed via the E1 mechanism. Initially, the hydroxyl group is a poor leaving group, but that is remedied by its protonation by the acid catalyst (H2SO4) converting it to a better leaving group, H2O. The loss of this water molecule results in a secondary carbocation intermediate that continues to form an alkene in an E1 elimination.
After performing the second TLC analysis (Figure 4), it was apparent that the product had purified because of the separation from the starting spot, unlike Figure 3. In addition, there was only spot that could be seen on the final TLC, indicating that only one isomer formed. Since (E,E) is the more stable isomer due to a less steric hindrance relative to the (E,Z) isomer, it can be inferred that (E,E) 1,4-Diphenyl-1,3-butadiene was the sole product. The proton NMR also confirmed that only (E,E) 1,4-Diphenyl-1,3-butadiene formed; based on literature values, the (E,E) isomer has peaks between 6.6-7.0 ppm for vinyl protons and 7.2-7.5 ppm for the phenyl protons. Likewise, the (E,Z) isomer has vinyl proton peaks at 6.2-6.5 ppm and 6.7-6.9 ppm in addition to the phenyl protons. The H NMR in Figure 5 shows multiplets only after 6.5 ppm, again confirming that only (E,E) 1,4-Diphenyl-1,3-butadiene formed. In addition, the coupling constant J of the (E,E) isomer is around 14-15 Hz, while for the (E,Z) isomer it is 11-12 Hz. Based on the NMR in Figure 5, the coupling constant is 15.15 Hz, complementing the production of (E,E)
The percentage yield gained was 70% from the Fischer Esterification reaction, which evaluates to be a good production of yield produced as the reaction is known to be reversible where conditions such as the concentration of the reactants, pressure and temperature could affect the extent of the reaction from performing. These white crystalline crystals were tested for impurity by conducting a melting point analysis and taking spectrospic data such as the IR spectra, HNMR and CNMR to confirm the identification of the product. These spectrospic methods and melting point analysis confirmed the white crystalline crystals were benzocaine.