Cyanobacteria
Cyanobacteria are one of the largest and most important groups of bacteria on the earth. Often called ‘the blue-green algae’ Cyanobacteria is in fact, not an algae at all. Algae are eukaryotic, whereas cyanobacteria, is a bacteria, and is prokaryotic. The name algae is used to refer to any aquatic organisms capable of photosynthesis, so the term is considered general, though in this case, inaccurate. Being tiny and normally unicellular, cyanobacteria grow in large colonies, making them visible to the human eye, and often dominate aquatic habitats such as shorelines. Over their 3.5 billion year reign, Cyanobacteria have helped to successfully establish the earth’s atmosphere, making it possible for human life forms to thrive and some of the oldest known fossils in the world are cyanobacteria, earning it the title of one of the great survivors of all time.
As a species, Cyanobacteria are chemically diverse, and owe their bluish colour to the pigment phycocyanin, which is used to capture light for photosynthesis. Because they are able to photosynthesize, they are able to...
Ryazantseva, I. N., Saakov, V. S., Andreyeva, I. N., Ogorodnikova, T. I. and Zuev, Y. F. 2012. Response of pigmented Serratia marcescens to the illumination. Journal of Photochemistry and Photobiology B: Biology, 106 p. 18-23
...indole, it is motile, there is no urease present and there is no coagulase activity. By deduction and logical reasoning Unknown 10a was determined to be Escherichia coli.
In this lab project, the microbiology students were given 2 unknown bacteria in a mixed broth each broth being numbered. The goal of this project is to determine the species of bacteria in the broth. They had to separate and isolate the bacteria from the mixed broth and ran numerous tests to identify the unknown bacteria. The significance of identifying an unknown bacteria is in a clinical setting. Determining the exact bacteria in order to prescribe the right treatment for the patient. This project is significant for a microbiology students because it gives necessary skills to them for future careers relating to clinical and research work.
The purpose of this laboratory is to learn about cultural, morphological, and biochemical characteristics that are used in identifying bacterial isolates. Besides identifying the unknown culture, students also gain an understanding of the process of identification and the techniques and theory behind the process. Experiments such as gram stain, negative stain, endospore and other important tests in identifying unknown bacteria are performed. Various chemical tests were done and the results were carefully determined to identify the unknown bacteria. First session of lab started of by the selection of an unknown bacterium then inoculations of 2 tryptic soy gar (TSA) slants, 1 nutrient broth (TSB), 1 nutrient gelatin deep, 1 motility
Making a cyanotype for the first time was a fun experience. A cyanotype is blueprint (literally) that makes a silhouette of the object. It was an early kind of photograph that was created by John Herschel (Stulik, 4). As I learned the process of making the cyanotype and made two prints myself, I noticed that it is similar as taking a picture with a camera when it comes to their uses and processes
In the last decade, the number of prescriptions for antibiotics has increases. Even though, antibiotics are helpful, an excess amount of antibiotics can be dangerous. Quite often antibiotics are wrongly prescribed to cure viruses when they are meant to target bacteria. Antibiotics are a type of medicine that is prone to kill microorganisms, or bacteria. By examining the PBS documentary Hunting the Nightmare Bacteria and the article “U.S. government taps GlaxoSmithKline for New Antibiotics” by Ben Hirschler as well as a few other articles can help depict the problem that is of doctors prescribing antibiotics wrongly or excessively, which can led to becoming harmful to the body.
An example would be the firefly squid, which has thousands of photophores, or organs that emit a deep blue
There is a gene which accounts for colouration, the Agouti gene, the most interesting of the Agouti genes is the Agouti viable yellow “Avy “
...hemical energy from cyanobacteria (the only bacteria that can perform photosynthesis) 2.4 billion years ago (Wernergreen). The first chloroplast came into being about one billion years ago when a single-celled protist and a cyanobacterium came together through endosymbiosis, and this first photosynthesizing eukaryotic lineage was the ancestor of land plants, green algae, and red algae. Cyanobacteria and algae endosymbionts have spread photosynthetic capabilities in such a broad range (Wernergreen). In other words, heterotrophic prokaryote cells had taken in autotrophic photosynthetic bacteria cells. The ingested cell continued to provide glucose and oxygen by photosynthesis. The host cell protected as well as provided carbon dioxide and nitrogen for the engulfed cell and overtime both cells lost the aptitude to survive without each other (Weber and Osteryoung).
All eukaryotic cells contain the mitochondrion that is made through this process. However, only some of the eukaryotic cells (plant cells) form chloroplasts through endosymbiosis after the mitochondrion is formed. Some of the prokaryotic cells ingest cyanobacteria. These bacteria contain photosynthetic pigments that are useful in photosynthesis. The cyanobacteria become dependent upon the host cell and can no longer survive on its own. Over time, it becomes the chloroplast, a main organelle of plant cells. The chloroplast is then able to convert energy from the sun to energy-rich sugar molecules which are then converted to chemical energy in the form of ATP. (1)
Bacterial cells, like plant cells, are surrounded by a cell wall. However, bacterial cell walls are made up of polysaccharide chains linked to amino acids, while plant cell walls are made up of cellulose, which contains no amino acids. Many bacteria secrete a slimy capsule around the outside of the cell wall. The capsule provides additional protection for the cell. Many of the bacteria that cause diseases in animals are surrounded by a capsule. The capsule prevents the white blood cells and antibodies from destroying the invading bacterium. Inside the capsule and the cell wall is the cell membrane. In aerobic bacteria, the reactions of cellular respiration take place on fingerlike infoldings of the cell membrane. Ribosomes are scattered throughout the cytoplasm, and the DNA is generally found in the center of the cell. Many bacilli and spirilla have flagella, which are used for locomotion in water. A few types of bacteria that lack flagella move by gliding on a surface. However, the mechanism of this gliding motion is unknown. Most bacteria are aerobic, they require free oxygen to carry on cellular respiration. Some bacteria, called facultatibe anaerobes can live in either the presence or absence of free oxygen. They obtain energy either by aerobic respiration when oxygen is present or by fermentation when oxygen is absent. Still other bacteria cannot live in the presence of oxygen. These are called obligate anaerobes. Such bacteria obtain energy only fermentation. Through fermentation, different groups of bacteria produce a wide variety of organic compounds. Besides ethyl alcohol and lactic acid, bacterial fermentation can produce acetic acid, acetone, butyl alcohol, glycol, butyric acid, propionic acid, and methane, the main component of natural gas. Most bacteria are heterotrophic bacteria are either saprophytes or parasites. Saprophytes feed on the remains of dead plants and animals, and ordinarily do not cause disease. They release digestive enzymes onto the organic matter. The enzymes breakdown the large food molecules into smaller molecules, which are absorbed by the bacterial cells. Parasites live on or in living organisms, and may cause disease. A few types of bacteria are Autotrophic, they can synthesize the organic nutrients they require from inorganic substances. Autotrophic bacteria are either photosynthetic or Chemosynthetic. The photosynthetic bacteria contain chlorophyll that are different from the plant chlorophyll. In bacterial photosynthesis, hydrogen is obtained by the splitting of compounds other than water.
In plants, proteins called photosynthetic reaction centers contain green chlorophyll that absorbs light energy. These proteins are held inside organelles called chloroplasts, which is abundant in leaf cells. In contrast, bacteria house the proteins in the plasma membrane. Chloroplasts are found in the cells of green plants and photosynthetic algae where photosynthesis takes place. Inside the chloroplast are folded structures in disk-shaped arrangement called thylakoids, which enclose chlorophyll in their membrane. Only certain portions of the light spectrum can be absorbed and the photosynthetic action spectrum is dependent on the type of accessory pigment present. Green plants mostly absorb red and blue wavelengths because the action spectrum corresponds to absorption spectrum for chlorophylls and carotenoids. The color of the pigment comes from the wavelengths of light reflected. Plants appear green because they reflect yellow and green wavelengths of light. Photosynthesis involves two series of chemical events, called the light independent that occurs in the stroma and light dependent reactions that occurs in the lumen. They are also known as light and dark reactions this terminology is somewhat ambiguous, because the entire process of photosynthesis is regulated to take place when an organism absorbs visible light. Organized clusters of chlorophyll and beta-carotene in the thylakoid membrane are present to
The Importance of Photosynthesis and What it Does for Life According to scientists, life is “the condition that distinguishes animals and plants from inorganic matter, including the capacity for growth, reproduction, functional activity, and continual change preceding death, also the way of life of a human being or animal. ”("Life,”) In order for one to have life, one must have the nine characteristics to be considered a living thing. These nine characteristics are: all living things are made up of cells, living things are able to reproduce, living things use energy, maintain homeostasis, respond and adapt to the environment, grow and develop, have a life span, evolve over time, and are interdependent. All of the nine characteristics have one thing in common, something that is needed for all living things to work, even if they do not know it.
It is a single-celled organism that is not visible to the human eye, which means it can only be seen with a microscope. Bacteria are classified as Prokaryotes. They make their own food from the sunlight and can absorb food from the materials that they live on.
The energy extracted today by the burning of coal and petroleum products represents sunlight energy captured and stored by photosynthesis almost 200 million years ago. A third very interesting group of bacteria synthesize sugars, not by using sunlight’s energy, but by extracting energy from inorganic chemical compounds; In a (d) deep sea vent, chemoautotrophs, such as these (e) thermophilic bacteria, capture energy from inorganic compounds to produce organic compounds.